File size: 6,685 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# ## ML-Agent Learning (SAC)
# Contains an implementation of SAC as described in https://arxiv.org/abs/1801.01290
# and implemented in https://github.com/hill-a/stable-baselines

from typing import cast

import numpy as np

from mlagents_envs.logging_util import get_logger
from mlagents_envs.base_env import BehaviorSpec
from mlagents.trainers.buffer import BufferKey
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.trainer.off_policy_trainer import OffPolicyTrainer
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.policy.policy import Policy
from mlagents.trainers.sac.optimizer_torch import TorchSACOptimizer, SACSettings
from mlagents.trainers.trajectory import Trajectory, ObsUtil
from mlagents.trainers.behavior_id_utils import BehaviorIdentifiers
from mlagents.trainers.settings import TrainerSettings

from mlagents.trainers.torch_entities.networks import SimpleActor

logger = get_logger(__name__)

BUFFER_TRUNCATE_PERCENT = 0.8

TRAINER_NAME = "sac"


class SACTrainer(OffPolicyTrainer):
    """
    The SACTrainer is an implementation of the SAC algorithm, with support
    for discrete actions and recurrent networks.
    """

    def __init__(
        self,
        behavior_name: str,
        reward_buff_cap: int,
        trainer_settings: TrainerSettings,
        training: bool,
        load: bool,
        seed: int,
        artifact_path: str,
    ):
        """
        Responsible for collecting experiences and training SAC model.
        :param behavior_name: The name of the behavior associated with trainer config
        :param reward_buff_cap: Max reward history to track in the reward buffer
        :param trainer_settings: The parameters for the trainer.
        :param training: Whether the trainer is set for training.
        :param load: Whether the model should be loaded.
        :param seed: The seed the model will be initialized with
        :param artifact_path: The directory within which to store artifacts from this trainer.
        """
        super().__init__(
            behavior_name,
            reward_buff_cap,
            trainer_settings,
            training,
            load,
            seed,
            artifact_path,
        )

        self.seed = seed
        self.policy: TorchPolicy = None  # type: ignore
        self.optimizer: TorchSACOptimizer = None  # type: ignore
        self.hyperparameters: SACSettings = cast(
            SACSettings, trainer_settings.hyperparameters
        )
        self._step = 0

        # Don't divide by zero
        self.update_steps = 1
        self.reward_signal_update_steps = 1

        self.steps_per_update = self.hyperparameters.steps_per_update
        self.reward_signal_steps_per_update = (
            self.hyperparameters.reward_signal_steps_per_update
        )

        self.checkpoint_replay_buffer = self.hyperparameters.save_replay_buffer

    def _process_trajectory(self, trajectory: Trajectory) -> None:
        """
        Takes a trajectory and processes it, putting it into the replay buffer.
        """
        super()._process_trajectory(trajectory)
        last_step = trajectory.steps[-1]
        agent_id = trajectory.agent_id  # All the agents should have the same ID

        agent_buffer_trajectory = trajectory.to_agentbuffer()
        # Check if we used group rewards, warn if so.
        self._warn_if_group_reward(agent_buffer_trajectory)

        # Update the normalization
        if self.is_training:
            self.policy.actor.update_normalization(agent_buffer_trajectory)
            self.optimizer.critic.update_normalization(agent_buffer_trajectory)

        # Evaluate all reward functions for reporting purposes
        self.collected_rewards["environment"][agent_id] += np.sum(
            agent_buffer_trajectory[BufferKey.ENVIRONMENT_REWARDS]
        )
        for name, reward_signal in self.optimizer.reward_signals.items():
            evaluate_result = (
                reward_signal.evaluate(agent_buffer_trajectory) * reward_signal.strength
            )

            # Report the reward signals
            self.collected_rewards[name][agent_id] += np.sum(evaluate_result)

        # Get all value estimates for reporting purposes
        (
            value_estimates,
            _,
            value_memories,
        ) = self.optimizer.get_trajectory_value_estimates(
            agent_buffer_trajectory, trajectory.next_obs, trajectory.done_reached
        )
        if value_memories is not None:
            agent_buffer_trajectory[BufferKey.CRITIC_MEMORY].set(value_memories)

        for name, v in value_estimates.items():
            self._stats_reporter.add_stat(
                f"Policy/{self.optimizer.reward_signals[name].name.capitalize()} Value",
                np.mean(v),
            )

        # Bootstrap using the last step rather than the bootstrap step if max step is reached.
        # Set last element to duplicate obs and remove dones.
        if last_step.interrupted:
            last_step_obs = last_step.obs
            for i, obs in enumerate(last_step_obs):
                agent_buffer_trajectory[ObsUtil.get_name_at_next(i)][-1] = obs
            agent_buffer_trajectory[BufferKey.DONE][-1] = False

        self._append_to_update_buffer(agent_buffer_trajectory)

        if trajectory.done_reached:
            self._update_end_episode_stats(agent_id, self.optimizer)

    def create_optimizer(self) -> TorchOptimizer:
        return TorchSACOptimizer(  # type: ignore
            cast(TorchPolicy, self.policy), self.trainer_settings  # type: ignore
        )  # type: ignore

    def create_policy(
        self, parsed_behavior_id: BehaviorIdentifiers, behavior_spec: BehaviorSpec
    ) -> TorchPolicy:
        """
        Creates a policy with a PyTorch backend and SAC hyperparameters
        :param parsed_behavior_id:
        :param behavior_spec: specifications for policy construction
        :return policy
        """
        actor_cls = SimpleActor
        actor_kwargs = {"conditional_sigma": True, "tanh_squash": True}

        policy = TorchPolicy(
            self.seed,
            behavior_spec,
            self.trainer_settings.network_settings,
            actor_cls,
            actor_kwargs,
        )
        self.maybe_load_replay_buffer()
        return policy

    def get_policy(self, name_behavior_id: str) -> Policy:
        """
        Gets policy from trainer associated with name_behavior_id
        :param name_behavior_id: full identifier of policy
        """

        return self.policy

    @staticmethod
    def get_trainer_name() -> str:
        return TRAINER_NAME