Spaces:
Running
Running
File size: 9,519 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
__credits__ = ["Carlos Luis"]
from os import path
from typing import Optional
import numpy as np
import gym
from gym import spaces
from gym.envs.classic_control import utils
from gym.error import DependencyNotInstalled
DEFAULT_X = np.pi
DEFAULT_Y = 1.0
class PendulumEnv(gym.Env):
"""
### Description
The inverted pendulum swingup problem is based on the classic problem in control theory.
The system consists of a pendulum attached at one end to a fixed point, and the other end being free.
The pendulum starts in a random position and the goal is to apply torque on the free end to swing it
into an upright position, with its center of gravity right above the fixed point.
The diagram below specifies the coordinate system used for the implementation of the pendulum's
dynamic equations.
![Pendulum Coordinate System](./diagrams/pendulum.png)
- `x-y`: cartesian coordinates of the pendulum's end in meters.
- `theta` : angle in radians.
- `tau`: torque in `N m`. Defined as positive _counter-clockwise_.
### Action Space
The action is a `ndarray` with shape `(1,)` representing the torque applied to free end of the pendulum.
| Num | Action | Min | Max |
|-----|--------|------|-----|
| 0 | Torque | -2.0 | 2.0 |
### Observation Space
The observation is a `ndarray` with shape `(3,)` representing the x-y coordinates of the pendulum's free
end and its angular velocity.
| Num | Observation | Min | Max |
|-----|------------------|------|-----|
| 0 | x = cos(theta) | -1.0 | 1.0 |
| 1 | y = sin(theta) | -1.0 | 1.0 |
| 2 | Angular Velocity | -8.0 | 8.0 |
### Rewards
The reward function is defined as:
*r = -(theta<sup>2</sup> + 0.1 * theta_dt<sup>2</sup> + 0.001 * torque<sup>2</sup>)*
where `$\theta$` is the pendulum's angle normalized between *[-pi, pi]* (with 0 being in the upright position).
Based on the above equation, the minimum reward that can be obtained is
*-(pi<sup>2</sup> + 0.1 * 8<sup>2</sup> + 0.001 * 2<sup>2</sup>) = -16.2736044*,
while the maximum reward is zero (pendulum is upright with zero velocity and no torque applied).
### Starting State
The starting state is a random angle in *[-pi, pi]* and a random angular velocity in *[-1,1]*.
### Episode Truncation
The episode truncates at 200 time steps.
### Arguments
- `g`: acceleration of gravity measured in *(m s<sup>-2</sup>)* used to calculate the pendulum dynamics.
The default value is g = 10.0 .
```
gym.make('Pendulum-v1', g=9.81)
```
### Version History
* v1: Simplify the math equations, no difference in behavior.
* v0: Initial versions release (1.0.0)
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": 30,
}
def __init__(self, render_mode: Optional[str] = None, g=10.0):
self.max_speed = 8
self.max_torque = 2.0
self.dt = 0.05
self.g = g
self.m = 1.0
self.l = 1.0
self.render_mode = render_mode
self.screen_dim = 500
self.screen = None
self.clock = None
self.isopen = True
high = np.array([1.0, 1.0, self.max_speed], dtype=np.float32)
# This will throw a warning in tests/envs/test_envs in utils/env_checker.py as the space is not symmetric
# or normalised as max_torque == 2 by default. Ignoring the issue here as the default settings are too old
# to update to follow the openai gym api
self.action_space = spaces.Box(
low=-self.max_torque, high=self.max_torque, shape=(1,), dtype=np.float32
)
self.observation_space = spaces.Box(low=-high, high=high, dtype=np.float32)
def step(self, u):
th, thdot = self.state # th := theta
g = self.g
m = self.m
l = self.l
dt = self.dt
u = np.clip(u, -self.max_torque, self.max_torque)[0]
self.last_u = u # for rendering
costs = angle_normalize(th) ** 2 + 0.1 * thdot**2 + 0.001 * (u**2)
newthdot = thdot + (3 * g / (2 * l) * np.sin(th) + 3.0 / (m * l**2) * u) * dt
newthdot = np.clip(newthdot, -self.max_speed, self.max_speed)
newth = th + newthdot * dt
self.state = np.array([newth, newthdot])
if self.render_mode == "human":
self.render()
return self._get_obs(), -costs, False, False, {}
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
if options is None:
high = np.array([DEFAULT_X, DEFAULT_Y])
else:
# Note that if you use custom reset bounds, it may lead to out-of-bound
# state/observations.
x = options.get("x_init") if "x_init" in options else DEFAULT_X
y = options.get("y_init") if "y_init" in options else DEFAULT_Y
x = utils.verify_number_and_cast(x)
y = utils.verify_number_and_cast(y)
high = np.array([x, y])
low = -high # We enforce symmetric limits.
self.state = self.np_random.uniform(low=low, high=high)
self.last_u = None
if self.render_mode == "human":
self.render()
return self._get_obs(), {}
def _get_obs(self):
theta, thetadot = self.state
return np.array([np.cos(theta), np.sin(theta), thetadot], dtype=np.float32)
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[classic_control]`"
)
if self.screen is None:
pygame.init()
if self.render_mode == "human":
pygame.display.init()
self.screen = pygame.display.set_mode(
(self.screen_dim, self.screen_dim)
)
else: # mode in "rgb_array"
self.screen = pygame.Surface((self.screen_dim, self.screen_dim))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface((self.screen_dim, self.screen_dim))
self.surf.fill((255, 255, 255))
bound = 2.2
scale = self.screen_dim / (bound * 2)
offset = self.screen_dim // 2
rod_length = 1 * scale
rod_width = 0.2 * scale
l, r, t, b = 0, rod_length, rod_width / 2, -rod_width / 2
coords = [(l, b), (l, t), (r, t), (r, b)]
transformed_coords = []
for c in coords:
c = pygame.math.Vector2(c).rotate_rad(self.state[0] + np.pi / 2)
c = (c[0] + offset, c[1] + offset)
transformed_coords.append(c)
gfxdraw.aapolygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.filled_polygon(self.surf, transformed_coords, (204, 77, 77))
gfxdraw.aacircle(self.surf, offset, offset, int(rod_width / 2), (204, 77, 77))
gfxdraw.filled_circle(
self.surf, offset, offset, int(rod_width / 2), (204, 77, 77)
)
rod_end = (rod_length, 0)
rod_end = pygame.math.Vector2(rod_end).rotate_rad(self.state[0] + np.pi / 2)
rod_end = (int(rod_end[0] + offset), int(rod_end[1] + offset))
gfxdraw.aacircle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
gfxdraw.filled_circle(
self.surf, rod_end[0], rod_end[1], int(rod_width / 2), (204, 77, 77)
)
fname = path.join(path.dirname(__file__), "assets/clockwise.png")
img = pygame.image.load(fname)
if self.last_u is not None:
scale_img = pygame.transform.smoothscale(
img,
(scale * np.abs(self.last_u) / 2, scale * np.abs(self.last_u) / 2),
)
is_flip = bool(self.last_u > 0)
scale_img = pygame.transform.flip(scale_img, is_flip, True)
self.surf.blit(
scale_img,
(
offset - scale_img.get_rect().centerx,
offset - scale_img.get_rect().centery,
),
)
# drawing axle
gfxdraw.aacircle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
gfxdraw.filled_circle(self.surf, offset, offset, int(0.05 * scale), (0, 0, 0))
self.surf = pygame.transform.flip(self.surf, False, True)
self.screen.blit(self.surf, (0, 0))
if self.render_mode == "human":
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
else: # mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2)
)
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
def angle_normalize(x):
return ((x + np.pi) % (2 * np.pi)) - np.pi
|