File size: 5,705 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import numpy as np

from gym import utils
from gym.envs.mujoco import MuJocoPyEnv
from gym.spaces import Box

DEFAULT_CAMERA_CONFIG = {
    "distance": 4.0,
}


class AntEnv(MuJocoPyEnv, utils.EzPickle):
    metadata = {
        "render_modes": [
            "human",
            "rgb_array",
            "depth_array",
        ],
        "render_fps": 20,
    }

    def __init__(
        self,
        xml_file="ant.xml",
        ctrl_cost_weight=0.5,
        contact_cost_weight=5e-4,
        healthy_reward=1.0,
        terminate_when_unhealthy=True,
        healthy_z_range=(0.2, 1.0),
        contact_force_range=(-1.0, 1.0),
        reset_noise_scale=0.1,
        exclude_current_positions_from_observation=True,
        **kwargs
    ):
        utils.EzPickle.__init__(
            self,
            xml_file,
            ctrl_cost_weight,
            contact_cost_weight,
            healthy_reward,
            terminate_when_unhealthy,
            healthy_z_range,
            contact_force_range,
            reset_noise_scale,
            exclude_current_positions_from_observation,
            **kwargs
        )

        self._ctrl_cost_weight = ctrl_cost_weight
        self._contact_cost_weight = contact_cost_weight

        self._healthy_reward = healthy_reward
        self._terminate_when_unhealthy = terminate_when_unhealthy
        self._healthy_z_range = healthy_z_range

        self._contact_force_range = contact_force_range

        self._reset_noise_scale = reset_noise_scale

        self._exclude_current_positions_from_observation = (
            exclude_current_positions_from_observation
        )

        if exclude_current_positions_from_observation:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(111,), dtype=np.float64
            )
        else:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(113,), dtype=np.float64
            )

        MuJocoPyEnv.__init__(
            self, xml_file, 5, observation_space=observation_space, **kwargs
        )

    @property
    def healthy_reward(self):
        return (
            float(self.is_healthy or self._terminate_when_unhealthy)
            * self._healthy_reward
        )

    def control_cost(self, action):
        control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
        return control_cost

    @property
    def contact_forces(self):
        raw_contact_forces = self.sim.data.cfrc_ext
        min_value, max_value = self._contact_force_range
        contact_forces = np.clip(raw_contact_forces, min_value, max_value)
        return contact_forces

    @property
    def contact_cost(self):
        contact_cost = self._contact_cost_weight * np.sum(
            np.square(self.contact_forces)
        )
        return contact_cost

    @property
    def is_healthy(self):
        state = self.state_vector()
        min_z, max_z = self._healthy_z_range
        is_healthy = np.isfinite(state).all() and min_z <= state[2] <= max_z
        return is_healthy

    @property
    def terminated(self):
        terminated = not self.is_healthy if self._terminate_when_unhealthy else False
        return terminated

    def step(self, action):
        xy_position_before = self.get_body_com("torso")[:2].copy()
        self.do_simulation(action, self.frame_skip)
        xy_position_after = self.get_body_com("torso")[:2].copy()

        xy_velocity = (xy_position_after - xy_position_before) / self.dt
        x_velocity, y_velocity = xy_velocity

        ctrl_cost = self.control_cost(action)
        contact_cost = self.contact_cost

        forward_reward = x_velocity
        healthy_reward = self.healthy_reward

        rewards = forward_reward + healthy_reward
        costs = ctrl_cost + contact_cost

        reward = rewards - costs
        terminated = self.terminated
        observation = self._get_obs()
        info = {
            "reward_forward": forward_reward,
            "reward_ctrl": -ctrl_cost,
            "reward_contact": -contact_cost,
            "reward_survive": healthy_reward,
            "x_position": xy_position_after[0],
            "y_position": xy_position_after[1],
            "distance_from_origin": np.linalg.norm(xy_position_after, ord=2),
            "x_velocity": x_velocity,
            "y_velocity": y_velocity,
            "forward_reward": forward_reward,
        }

        if self.render_mode == "human":
            self.render()
        return observation, reward, terminated, False, info

    def _get_obs(self):
        position = self.sim.data.qpos.flat.copy()
        velocity = self.sim.data.qvel.flat.copy()
        contact_force = self.contact_forces.flat.copy()

        if self._exclude_current_positions_from_observation:
            position = position[2:]

        observations = np.concatenate((position, velocity, contact_force))

        return observations

    def reset_model(self):
        noise_low = -self._reset_noise_scale
        noise_high = self._reset_noise_scale

        qpos = self.init_qpos + self.np_random.uniform(
            low=noise_low, high=noise_high, size=self.model.nq
        )
        qvel = (
            self.init_qvel
            + self._reset_noise_scale * self.np_random.standard_normal(self.model.nv)
        )
        self.set_state(qpos, qvel)

        observation = self._get_obs()

        return observation

    def viewer_setup(self):
        assert self.viewer is not None
        for key, value in DEFAULT_CAMERA_CONFIG.items():
            if isinstance(value, np.ndarray):
                getattr(self.viewer.cam, key)[:] = value
            else:
                setattr(self.viewer.cam, key, value)