File size: 19,981 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import numpy as np

from gym import utils
from gym.envs.mujoco import MujocoEnv
from gym.spaces import Box

DEFAULT_CAMERA_CONFIG = {
    "distance": 4.0,
}


class AntEnv(MujocoEnv, utils.EzPickle):
    """
    ### Description

    This environment is based on the environment introduced by Schulman,
    Moritz, Levine, Jordan and Abbeel in ["High-Dimensional Continuous Control
    Using Generalized Advantage Estimation"](https://arxiv.org/abs/1506.02438).
    The ant is a 3D robot consisting of one torso (free rotational body) with
    four legs attached to it with each leg having two links. The goal is to
    coordinate the four legs to move in the forward (right) direction by applying
    torques on the eight hinges connecting the two links of each leg and the torso
    (nine parts and eight hinges).

    ### Action Space
    The action space is a `Box(-1, 1, (8,), float32)`. An action represents the torques applied at the hinge joints.

    | Num | Action                                                            | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit         |
    | --- | ----------------------------------------------------------------- | ----------- | ----------- | -------------------------------- | ----- | ------------ |
    | 0   | Torque applied on the rotor between the torso and front left hip  | -1          | 1           | hip_1 (front_left_leg)           | hinge | torque (N m) |
    | 1   | Torque applied on the rotor between the front left two links      | -1          | 1           | angle_1 (front_left_leg)         | hinge | torque (N m) |
    | 2   | Torque applied on the rotor between the torso and front right hip | -1          | 1           | hip_2 (front_right_leg)          | hinge | torque (N m) |
    | 3   | Torque applied on the rotor between the front right two links     | -1          | 1           | angle_2 (front_right_leg)        | hinge | torque (N m) |
    | 4   | Torque applied on the rotor between the torso and back left hip   | -1          | 1           | hip_3 (back_leg)                 | hinge | torque (N m) |
    | 5   | Torque applied on the rotor between the back left two links       | -1          | 1           | angle_3 (back_leg)               | hinge | torque (N m) |
    | 6   | Torque applied on the rotor between the torso and back right hip  | -1          | 1           | hip_4 (right_back_leg)           | hinge | torque (N m) |
    | 7   | Torque applied on the rotor between the back right two links      | -1          | 1           | angle_4 (right_back_leg)         | hinge | torque (N m) |

    ### Observation Space

    Observations consist of positional values of different body parts of the ant,
    followed by the velocities of those individual parts (their derivatives) with all
    the positions ordered before all the velocities.

    By default, observations do not include the x- and y-coordinates of the ant's torso. These may
    be included by passing `exclude_current_positions_from_observation=False` during construction.
    In that case, the observation space will have 113 dimensions where the first two dimensions
    represent the x- and y- coordinates of the ant's torso.
    Regardless of whether `exclude_current_positions_from_observation` was set to true or false, the x- and y-coordinates
    of the torso will be returned in `info` with keys `"x_position"` and `"y_position"`, respectively.

    However, by default, an observation is a `ndarray` with shape `(111,)`
    where the elements correspond to the following:

    | Num | Observation                                                  | Min    | Max    | Name (in corresponding XML file)       | Joint | Unit                     |
    |-----|--------------------------------------------------------------|--------|--------|----------------------------------------|-------|--------------------------|
    | 0   | z-coordinate of the torso (centre)                           | -Inf   | Inf    | torso                                  | free  | position (m)             |
    | 1   | x-orientation of the torso (centre)                          | -Inf   | Inf    | torso                                  | free  | angle (rad)              |
    | 2   | y-orientation of the torso (centre)                          | -Inf   | Inf    | torso                                  | free  | angle (rad)              |
    | 3   | z-orientation of the torso (centre)                          | -Inf   | Inf    | torso                                  | free  | angle (rad)              |
    | 4   | w-orientation of the torso (centre)                          | -Inf   | Inf    | torso                                  | free  | angle (rad)              |
    | 5   | angle between torso and first link on front left             | -Inf   | Inf    | hip_1 (front_left_leg)                 | hinge | angle (rad)              |
    | 6   | angle between the two links on the front left                | -Inf   | Inf    | ankle_1 (front_left_leg)               | hinge | angle (rad)              |
    | 7   | angle between torso and first link on front right            | -Inf   | Inf    | hip_2 (front_right_leg)                | hinge | angle (rad)              |
    | 8   | angle between the two links on the front right               | -Inf   | Inf    | ankle_2 (front_right_leg)              | hinge | angle (rad)              |
    | 9   | angle between torso and first link on back left              | -Inf   | Inf    | hip_3 (back_leg)                       | hinge | angle (rad)              |
    | 10  | angle between the two links on the back left                 | -Inf   | Inf    | ankle_3 (back_leg)                     | hinge | angle (rad)              |
    | 11  | angle between torso and first link on back right             | -Inf   | Inf    | hip_4 (right_back_leg)                 | hinge | angle (rad)              |
    | 12  | angle between the two links on the back right                | -Inf   | Inf    | ankle_4 (right_back_leg)               | hinge | angle (rad)              |
    | 13  | x-coordinate velocity of the torso                           | -Inf   | Inf    | torso                                  | free  | velocity (m/s)           |
    | 14  | y-coordinate velocity of the torso                           | -Inf   | Inf    | torso                                  | free  | velocity (m/s)           |
    | 15  | z-coordinate velocity of the torso                           | -Inf   | Inf    | torso                                  | free  | velocity (m/s)           |
    | 16  | x-coordinate angular velocity of the torso                   | -Inf   | Inf    | torso                                  | free  | angular velocity (rad/s) |
    | 17  | y-coordinate angular velocity of the torso                   | -Inf   | Inf    | torso                                  | free  | angular velocity (rad/s) |
    | 18  | z-coordinate angular velocity of the torso                   | -Inf   | Inf    | torso                                  | free  | angular velocity (rad/s) |
    | 19  | angular velocity of angle between torso and front left link  | -Inf   | Inf    | hip_1 (front_left_leg)                 | hinge | angle (rad)              |
    | 20  | angular velocity of the angle between front left links       | -Inf   | Inf    | ankle_1 (front_left_leg)               | hinge | angle (rad)              |
    | 21  | angular velocity of angle between torso and front right link | -Inf   | Inf    | hip_2 (front_right_leg)                | hinge | angle (rad)              |
    | 22  | angular velocity of the angle between front right links      | -Inf   | Inf    | ankle_2 (front_right_leg)              | hinge | angle (rad)              |
    | 23  | angular velocity of angle between torso and back left link   | -Inf   | Inf    | hip_3 (back_leg)                       | hinge | angle (rad)              |
    | 24  | angular velocity of the angle between back left links        | -Inf   | Inf    | ankle_3 (back_leg)                     | hinge | angle (rad)              |
    | 25  | angular velocity of angle between torso and back right link  | -Inf   | Inf    | hip_4 (right_back_leg)                 | hinge | angle (rad)              |
    | 26  |angular velocity of the angle between back right links        | -Inf   | Inf    | ankle_4 (right_back_leg)               | hinge | angle (rad)              |


    The remaining 14*6 = 84 elements of the observation are contact forces
    (external forces - force x, y, z and torque x, y, z) applied to the
    center of mass of each of the links. The 14 links are: the ground link,
    the torso link, and 3 links for each leg (1 + 1 + 12) with the 6 external forces.

    The (x,y,z) coordinates are translational DOFs while the orientations are rotational
    DOFs expressed as quaternions. One can read more about free joints on the [Mujoco Documentation](https://mujoco.readthedocs.io/en/latest/XMLreference.html).


    **Note:** Ant-v4 environment no longer has the following contact forces issue.
    If using previous Humanoid versions from v4, there have been reported issues that using a Mujoco-Py version > 2.0 results
    in the contact forces always being 0. As such we recommend to use a Mujoco-Py version < 2.0
    when using the Ant environment if you would like to report results with contact forces (if
    contact forces are not used in your experiments, you can use version > 2.0).

    ### Rewards
    The reward consists of three parts:
    - *healthy_reward*: Every timestep that the ant is healthy (see definition in section "Episode Termination"), it gets a reward of fixed value `healthy_reward`
    - *forward_reward*: A reward of moving forward which is measured as
    *(x-coordinate before action - x-coordinate after action)/dt*. *dt* is the time
    between actions and is dependent on the `frame_skip` parameter (default is 5),
    where the frametime is 0.01 - making the default *dt = 5 * 0.01 = 0.05*.
    This reward would be positive if the ant moves forward (in positive x direction).
    - *ctrl_cost*: A negative reward for penalising the ant if it takes actions
    that are too large. It is measured as *`ctrl_cost_weight` * sum(action<sup>2</sup>)*
    where *`ctr_cost_weight`* is a parameter set for the control and has a default value of 0.5.
    - *contact_cost*: A negative reward for penalising the ant if the external contact
    force is too large. It is calculated *`contact_cost_weight` * sum(clip(external contact
    force to `contact_force_range`)<sup>2</sup>)*.

    The total reward returned is ***reward*** *=* *healthy_reward + forward_reward - ctrl_cost - contact_cost* and `info` will also contain the individual reward terms.

    ### Starting State
    All observations start in state
    (0.0, 0.0,  0.75, 1.0, 0.0  ... 0.0) with a uniform noise in the range
    of [-`reset_noise_scale`, `reset_noise_scale`] added to the positional values and standard normal noise
    with mean 0 and standard deviation `reset_noise_scale` added to the velocity values for
    stochasticity. Note that the initial z coordinate is intentionally selected
    to be slightly high, thereby indicating a standing up ant. The initial orientation
    is designed to make it face forward as well.

    ### Episode End
    The ant is said to be unhealthy if any of the following happens:

    1. Any of the state space values is no longer finite
    2. The z-coordinate of the torso is **not** in the closed interval given by `healthy_z_range` (defaults to [0.2, 1.0])

    If `terminate_when_unhealthy=True` is passed during construction (which is the default),
    the episode ends when any of the following happens:

    1. Truncation: The episode duration reaches a 1000 timesteps
    2. Termination: The ant is unhealthy

    If `terminate_when_unhealthy=False` is passed, the episode is ended only when 1000 timesteps are exceeded.

    ### Arguments

    No additional arguments are currently supported in v2 and lower.

    ```
    env = gym.make('Ant-v2')
    ```

    v3 and v4 take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.

    ```
    env = gym.make('Ant-v4', ctrl_cost_weight=0.1, ...)
    ```

    | Parameter               | Type       | Default      |Description                    |
    |-------------------------|------------|--------------|-------------------------------|
    | `xml_file`              | **str**    | `"ant.xml"`  | Path to a MuJoCo model |
    | `ctrl_cost_weight`      | **float**  | `0.5`        | Weight for *ctrl_cost* term (see section on reward) |
    | `contact_cost_weight`   | **float**  | `5e-4`       | Weight for *contact_cost* term (see section on reward) |
    | `healthy_reward`        | **float**  | `1`          | Constant reward given if the ant is "healthy" after timestep |
    | `terminate_when_unhealthy` | **bool**| `True`       | If true, issue a done signal if the z-coordinate of the torso is no longer in the `healthy_z_range` |
    | `healthy_z_range`       | **tuple**  | `(0.2, 1)`   | The ant is considered healthy if the z-coordinate of the torso is in this range |
    | `contact_force_range`   | **tuple**  | `(-1, 1)`    | Contact forces are clipped to this range in the computation of *contact_cost* |
    | `reset_noise_scale`     | **float**  | `0.1`        | Scale of random perturbations of initial position and velocity (see section on Starting State) |
    | `exclude_current_positions_from_observation`| **bool** | `True`| Whether or not to omit the x- and y-coordinates from observations. Excluding the position can serve as an inductive bias to induce position-agnostic behavior in policies |

    ### Version History
    * v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3
    * v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
    * v2: All continuous control environments now use mujoco_py >= 1.50
    * v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.
    * v0: Initial versions release (1.0.0)
    """

    metadata = {
        "render_modes": [
            "human",
            "rgb_array",
            "depth_array",
        ],
        "render_fps": 20,
    }

    def __init__(
        self,
        xml_file="ant.xml",
        ctrl_cost_weight=0.5,
        use_contact_forces=False,
        contact_cost_weight=5e-4,
        healthy_reward=1.0,
        terminate_when_unhealthy=True,
        healthy_z_range=(0.2, 1.0),
        contact_force_range=(-1.0, 1.0),
        reset_noise_scale=0.1,
        exclude_current_positions_from_observation=True,
        **kwargs
    ):
        utils.EzPickle.__init__(
            self,
            xml_file,
            ctrl_cost_weight,
            use_contact_forces,
            contact_cost_weight,
            healthy_reward,
            terminate_when_unhealthy,
            healthy_z_range,
            contact_force_range,
            reset_noise_scale,
            exclude_current_positions_from_observation,
            **kwargs
        )

        self._ctrl_cost_weight = ctrl_cost_weight
        self._contact_cost_weight = contact_cost_weight

        self._healthy_reward = healthy_reward
        self._terminate_when_unhealthy = terminate_when_unhealthy
        self._healthy_z_range = healthy_z_range

        self._contact_force_range = contact_force_range

        self._reset_noise_scale = reset_noise_scale

        self._use_contact_forces = use_contact_forces

        self._exclude_current_positions_from_observation = (
            exclude_current_positions_from_observation
        )

        obs_shape = 27
        if not exclude_current_positions_from_observation:
            obs_shape += 2
        if use_contact_forces:
            obs_shape += 84

        observation_space = Box(
            low=-np.inf, high=np.inf, shape=(obs_shape,), dtype=np.float64
        )

        MujocoEnv.__init__(
            self, xml_file, 5, observation_space=observation_space, **kwargs
        )

    @property
    def healthy_reward(self):
        return (
            float(self.is_healthy or self._terminate_when_unhealthy)
            * self._healthy_reward
        )

    def control_cost(self, action):
        control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
        return control_cost

    @property
    def contact_forces(self):
        raw_contact_forces = self.data.cfrc_ext
        min_value, max_value = self._contact_force_range
        contact_forces = np.clip(raw_contact_forces, min_value, max_value)
        return contact_forces

    @property
    def contact_cost(self):
        contact_cost = self._contact_cost_weight * np.sum(
            np.square(self.contact_forces)
        )
        return contact_cost

    @property
    def is_healthy(self):
        state = self.state_vector()
        min_z, max_z = self._healthy_z_range
        is_healthy = np.isfinite(state).all() and min_z <= state[2] <= max_z
        return is_healthy

    @property
    def terminated(self):
        terminated = not self.is_healthy if self._terminate_when_unhealthy else False
        return terminated

    def step(self, action):
        xy_position_before = self.get_body_com("torso")[:2].copy()
        self.do_simulation(action, self.frame_skip)
        xy_position_after = self.get_body_com("torso")[:2].copy()

        xy_velocity = (xy_position_after - xy_position_before) / self.dt
        x_velocity, y_velocity = xy_velocity

        forward_reward = x_velocity
        healthy_reward = self.healthy_reward

        rewards = forward_reward + healthy_reward

        costs = ctrl_cost = self.control_cost(action)

        terminated = self.terminated
        observation = self._get_obs()
        info = {
            "reward_forward": forward_reward,
            "reward_ctrl": -ctrl_cost,
            "reward_survive": healthy_reward,
            "x_position": xy_position_after[0],
            "y_position": xy_position_after[1],
            "distance_from_origin": np.linalg.norm(xy_position_after, ord=2),
            "x_velocity": x_velocity,
            "y_velocity": y_velocity,
            "forward_reward": forward_reward,
        }
        if self._use_contact_forces:
            contact_cost = self.contact_cost
            costs += contact_cost
            info["reward_ctrl"] = -contact_cost

        reward = rewards - costs

        if self.render_mode == "human":
            self.render()
        return observation, reward, terminated, False, info

    def _get_obs(self):
        position = self.data.qpos.flat.copy()
        velocity = self.data.qvel.flat.copy()

        if self._exclude_current_positions_from_observation:
            position = position[2:]

        if self._use_contact_forces:
            contact_force = self.contact_forces.flat.copy()
            return np.concatenate((position, velocity, contact_force))
        else:
            return np.concatenate((position, velocity))

    def reset_model(self):
        noise_low = -self._reset_noise_scale
        noise_high = self._reset_noise_scale

        qpos = self.init_qpos + self.np_random.uniform(
            low=noise_low, high=noise_high, size=self.model.nq
        )
        qvel = (
            self.init_qvel
            + self._reset_noise_scale * self.np_random.standard_normal(self.model.nv)
        )
        self.set_state(qpos, qvel)

        observation = self._get_obs()

        return observation

    def viewer_setup(self):
        assert self.viewer is not None
        for key, value in DEFAULT_CAMERA_CONFIG.items():
            if isinstance(value, np.ndarray):
                getattr(self.viewer.cam, key)[:] = value
            else:
                setattr(self.viewer.cam, key, value)