File size: 13,252 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
__credits__ = ["Rushiv Arora"]

import numpy as np

from gym import utils
from gym.envs.mujoco import MujocoEnv
from gym.spaces import Box

DEFAULT_CAMERA_CONFIG = {
    "distance": 4.0,
}


class HalfCheetahEnv(MujocoEnv, utils.EzPickle):
    """
    ### Description

    This environment is based on the work by P. Wawrzyński in
    ["A Cat-Like Robot Real-Time Learning to Run"](http://staff.elka.pw.edu.pl/~pwawrzyn/pub-s/0812_LSCLRR.pdf).
    The HalfCheetah is a 2-dimensional robot consisting of 9 links and 8
    joints connecting them (including two paws). The goal is to apply a torque
    on the joints to make the cheetah run forward (right) as fast as possible,
    with a positive reward allocated based on the distance moved forward and a
    negative reward allocated for moving backward. The torso and head of the
    cheetah are fixed, and the torque can only be applied on the other 6 joints
    over the front and back thighs (connecting to the torso), shins
    (connecting to the thighs) and feet (connecting to the shins).

    ### Action Space
    The action space is a `Box(-1, 1, (6,), float32)`. An action represents the torques applied between *links*.

    | Num | Action                                  | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit         |
    | --- | --------------------------------------- | ----------- | ----------- | -------------------------------- | ----- | ------------ |
    | 0   | Torque applied on the back thigh rotor  | -1          | 1           | bthigh                           | hinge | torque (N m) |
    | 1   | Torque applied on the back shin rotor   | -1          | 1           | bshin                            | hinge | torque (N m) |
    | 2   | Torque applied on the back foot rotor   | -1          | 1           | bfoot                            | hinge | torque (N m) |
    | 3   | Torque applied on the front thigh rotor | -1          | 1           | fthigh                           | hinge | torque (N m) |
    | 4   | Torque applied on the front shin rotor  | -1          | 1           | fshin                            | hinge | torque (N m) |
    | 5   | Torque applied on the front foot rotor  | -1          | 1           | ffoot                            | hinge | torque (N m) |


    ### Observation Space

    Observations consist of positional values of different body parts of the
    cheetah, followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities.

    By default, observations do not include the x-coordinate of the cheetah's center of mass. It may
    be included by passing `exclude_current_positions_from_observation=False` during construction.
    In that case, the observation space will have 18 dimensions where the first dimension
    represents the x-coordinate of the cheetah's center of mass.
    Regardless of whether `exclude_current_positions_from_observation` was set to true or false, the x-coordinate
    will be returned in `info` with key `"x_position"`.

    However, by default, the observation is a `ndarray` with shape `(17,)` where the elements correspond to the following:


    | Num | Observation                          | Min  | Max | Name (in corresponding XML file) | Joint | Unit                     |
    | --- | ------------------------------------ | ---- | --- | -------------------------------- | ----- | ------------------------ |
    | 0   | z-coordinate of the front tip        | -Inf | Inf | rootz                            | slide | position (m)             |
    | 1   | angle of the front tip               | -Inf | Inf | rooty                            | hinge | angle (rad)              |
    | 2   | angle of the second rotor            | -Inf | Inf | bthigh                           | hinge | angle (rad)              |
    | 3   | angle of the second rotor            | -Inf | Inf | bshin                            | hinge | angle (rad)              |
    | 4   | velocity of the tip along the x-axis | -Inf | Inf | bfoot                            | hinge | angle (rad)              |
    | 5   | velocity of the tip along the y-axis | -Inf | Inf | fthigh                           | hinge | angle (rad)              |
    | 6   | angular velocity of front tip        | -Inf | Inf | fshin                            | hinge | angle (rad)              |
    | 7   | angular velocity of second rotor     | -Inf | Inf | ffoot                            | hinge | angle (rad)              |
    | 8   | x-coordinate of the front tip        | -Inf | Inf | rootx                            | slide | velocity (m/s)           |
    | 9   | y-coordinate of the front tip        | -Inf | Inf | rootz                            | slide | velocity (m/s)           |
    | 10  | angle of the front tip               | -Inf | Inf | rooty                            | hinge | angular velocity (rad/s) |
    | 11  | angle of the second rotor            | -Inf | Inf | bthigh                           | hinge | angular velocity (rad/s) |
    | 12  | angle of the second rotor            | -Inf | Inf | bshin                            | hinge | angular velocity (rad/s) |
    | 13  | velocity of the tip along the x-axis | -Inf | Inf | bfoot                            | hinge | angular velocity (rad/s) |
    | 14  | velocity of the tip along the y-axis | -Inf | Inf | fthigh                           | hinge | angular velocity (rad/s) |
    | 15  | angular velocity of front tip        | -Inf | Inf | fshin                            | hinge | angular velocity (rad/s) |
    | 16  | angular velocity of second rotor     | -Inf | Inf | ffoot                            | hinge | angular velocity (rad/s) |

    ### Rewards
    The reward consists of two parts:
    - *forward_reward*: A reward of moving forward which is measured
    as *`forward_reward_weight` * (x-coordinate before action - x-coordinate after action)/dt*. *dt* is
    the time between actions and is dependent on the frame_skip parameter
    (fixed to 5), where the frametime is 0.01 - making the
    default *dt = 5 * 0.01 = 0.05*. This reward would be positive if the cheetah
    runs forward (right).
    - *ctrl_cost*: A cost for penalising the cheetah if it takes
    actions that are too large. It is measured as *`ctrl_cost_weight` *
    sum(action<sup>2</sup>)* where *`ctrl_cost_weight`* is a parameter set for the
    control and has a default value of 0.1

    The total reward returned is ***reward*** *=* *forward_reward - ctrl_cost* and `info` will also contain the individual reward terms

    ### Starting State
    All observations start in state (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,) with a noise added to the
    initial state for stochasticity. As seen before, the first 8 values in the
    state are positional and the last 9 values are velocity. A uniform noise in
    the range of [-`reset_noise_scale`, `reset_noise_scale`] is added to the positional values while a standard
    normal noise with a mean of 0 and standard deviation of `reset_noise_scale` is added to the
    initial velocity values of all zeros.

    ### Episode End
    The episode truncates when the episode length is greater than 1000.

    ### Arguments

    No additional arguments are currently supported in v2 and lower.

    ```
    env = gym.make('HalfCheetah-v2')
    ```

    v3 and v4 take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.

    ```
    env = gym.make('HalfCheetah-v4', ctrl_cost_weight=0.1, ....)
    ```

    | Parameter                                    | Type      | Default              | Description                                                                                                                                                       |
    | -------------------------------------------- | --------- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
    | `xml_file`                                   | **str**   | `"half_cheetah.xml"` | Path to a MuJoCo model                                                                                                                                            |
    | `forward_reward_weight`                      | **float** | `1.0`                | Weight for _forward_reward_ term (see section on reward)                                                                                                          |
    | `ctrl_cost_weight`                           | **float** | `0.1`                | Weight for _ctrl_cost_ weight (see section on reward)                                                                                                             |
    | `reset_noise_scale`                          | **float** | `0.1`                | Scale of random perturbations of initial position and velocity (see section on Starting State)                                                                    |
    | `exclude_current_positions_from_observation` | **bool**  | `True`               | Whether or not to omit the x-coordinate from observations. Excluding the position can serve as an inductive bias to induce position-agnostic behavior in policies |

    ### Version History

    * v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3
    * v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
    * v2: All continuous control environments now use mujoco_py >= 1.50
    * v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.
    * v0: Initial versions release (1.0.0)
    """

    metadata = {
        "render_modes": [
            "human",
            "rgb_array",
            "depth_array",
        ],
        "render_fps": 20,
    }

    def __init__(
        self,
        forward_reward_weight=1.0,
        ctrl_cost_weight=0.1,
        reset_noise_scale=0.1,
        exclude_current_positions_from_observation=True,
        **kwargs
    ):
        utils.EzPickle.__init__(
            self,
            forward_reward_weight,
            ctrl_cost_weight,
            reset_noise_scale,
            exclude_current_positions_from_observation,
            **kwargs
        )

        self._forward_reward_weight = forward_reward_weight

        self._ctrl_cost_weight = ctrl_cost_weight

        self._reset_noise_scale = reset_noise_scale

        self._exclude_current_positions_from_observation = (
            exclude_current_positions_from_observation
        )

        if exclude_current_positions_from_observation:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64
            )
        else:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(18,), dtype=np.float64
            )

        MujocoEnv.__init__(
            self, "half_cheetah.xml", 5, observation_space=observation_space, **kwargs
        )

    def control_cost(self, action):
        control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
        return control_cost

    def step(self, action):
        x_position_before = self.data.qpos[0]
        self.do_simulation(action, self.frame_skip)
        x_position_after = self.data.qpos[0]
        x_velocity = (x_position_after - x_position_before) / self.dt

        ctrl_cost = self.control_cost(action)

        forward_reward = self._forward_reward_weight * x_velocity

        observation = self._get_obs()
        reward = forward_reward - ctrl_cost
        terminated = False
        info = {
            "x_position": x_position_after,
            "x_velocity": x_velocity,
            "reward_run": forward_reward,
            "reward_ctrl": -ctrl_cost,
        }

        if self.render_mode == "human":
            self.render()
        return observation, reward, terminated, False, info

    def _get_obs(self):
        position = self.data.qpos.flat.copy()
        velocity = self.data.qvel.flat.copy()

        if self._exclude_current_positions_from_observation:
            position = position[1:]

        observation = np.concatenate((position, velocity)).ravel()
        return observation

    def reset_model(self):
        noise_low = -self._reset_noise_scale
        noise_high = self._reset_noise_scale

        qpos = self.init_qpos + self.np_random.uniform(
            low=noise_low, high=noise_high, size=self.model.nq
        )
        qvel = (
            self.init_qvel
            + self._reset_noise_scale * self.np_random.standard_normal(self.model.nv)
        )

        self.set_state(qpos, qvel)

        observation = self._get_obs()
        return observation

    def viewer_setup(self):
        assert self.viewer is not None
        for key, value in DEFAULT_CAMERA_CONFIG.items():
            if isinstance(value, np.ndarray):
                getattr(self.viewer.cam, key)[:] = value
            else:
                setattr(self.viewer.cam, key, value)