File size: 2,190 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np

from gym import utils
from gym.envs.mujoco import MuJocoPyEnv
from gym.spaces import Box


class ReacherEnv(MuJocoPyEnv, utils.EzPickle):
    metadata = {
        "render_modes": [
            "human",
            "rgb_array",
            "depth_array",
        ],
        "render_fps": 50,
    }

    def __init__(self, **kwargs):
        utils.EzPickle.__init__(self, **kwargs)
        observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64)
        MuJocoPyEnv.__init__(
            self, "reacher.xml", 2, observation_space=observation_space, **kwargs
        )

    def step(self, a):
        vec = self.get_body_com("fingertip") - self.get_body_com("target")
        reward_dist = -np.linalg.norm(vec)
        reward_ctrl = -np.square(a).sum()
        reward = reward_dist + reward_ctrl

        self.do_simulation(a, self.frame_skip)
        if self.render_mode == "human":
            self.render()

        ob = self._get_obs()
        return (
            ob,
            reward,
            False,
            False,
            dict(reward_dist=reward_dist, reward_ctrl=reward_ctrl),
        )

    def viewer_setup(self):
        assert self.viewer is not None
        self.viewer.cam.trackbodyid = 0

    def reset_model(self):
        qpos = (
            self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq)
            + self.init_qpos
        )
        while True:
            self.goal = self.np_random.uniform(low=-0.2, high=0.2, size=2)
            if np.linalg.norm(self.goal) < 0.2:
                break
        qpos[-2:] = self.goal
        qvel = self.init_qvel + self.np_random.uniform(
            low=-0.005, high=0.005, size=self.model.nv
        )
        qvel[-2:] = 0
        self.set_state(qpos, qvel)
        return self._get_obs()

    def _get_obs(self):
        theta = self.sim.data.qpos.flat[:2]
        return np.concatenate(
            [
                np.cos(theta),
                np.sin(theta),
                self.sim.data.qpos.flat[2:],
                self.sim.data.qvel.flat[:2],
                self.get_body_com("fingertip") - self.get_body_com("target"),
            ]
        )