File size: 16,500 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np

from gym import utils
from gym.envs.mujoco import MujocoEnv
from gym.spaces import Box

DEFAULT_CAMERA_CONFIG = {
    "trackbodyid": 2,
    "distance": 4.0,
    "lookat": np.array((0.0, 0.0, 1.15)),
    "elevation": -20.0,
}


class Walker2dEnv(MujocoEnv, utils.EzPickle):
    """
    ### Description

    This environment builds on the hopper environment based on the work done by Erez, Tassa, and Todorov
    in ["Infinite Horizon Model Predictive Control for Nonlinear Periodic Tasks"](http://www.roboticsproceedings.org/rss07/p10.pdf)
    by adding another set of legs making it possible for the robot to walker forward instead of
    hop. Like other Mujoco environments, this environment aims to increase the number of independent state
    and control variables as compared to the classic control environments. The walker is a
    two-dimensional two-legged figure that consist of four main body parts - a single torso at the top
    (with the two legs splitting after the torso), two thighs in the middle below the torso, two legs
    in the bottom below the thighs, and two feet attached to the legs on which the entire body rests.
    The goal is to make coordinate both sets of feet, legs, and thighs to move in the forward (right)
    direction by applying torques on the six hinges connecting the six body parts.

    ### Action Space
    The action space is a `Box(-1, 1, (6,), float32)`. An action represents the torques applied at the hinge joints.

    | Num | Action                                 | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit         |
    |-----|----------------------------------------|-------------|-------------|----------------------------------|-------|--------------|
    | 0   | Torque applied on the thigh rotor      | -1          | 1           | thigh_joint                      | hinge | torque (N m) |
    | 1   | Torque applied on the leg rotor        | -1          | 1           | leg_joint                        | hinge | torque (N m) |
    | 2   | Torque applied on the foot rotor       | -1          | 1           | foot_joint                       | hinge | torque (N m) |
    | 3   | Torque applied on the left thigh rotor | -1          | 1           | thigh_left_joint                 | hinge | torque (N m) |
    | 4   | Torque applied on the left leg rotor   | -1          | 1           | leg_left_joint                   | hinge | torque (N m) |
    | 5   | Torque applied on the left foot rotor  | -1          | 1           | foot_left_joint                  | hinge | torque (N m) |

    ### Observation Space

    Observations consist of positional values of different body parts of the walker,
    followed by the velocities of those individual parts (their derivatives) with all the positions ordered before all the velocities.

    By default, observations do not include the x-coordinate of the top. It may
    be included by passing `exclude_current_positions_from_observation=False` during construction.
    In that case, the observation space will have 18 dimensions where the first dimension
    represent the x-coordinates of the top of the walker.
    Regardless of whether `exclude_current_positions_from_observation` was set to true or false, the x-coordinate
    of the top will be returned in `info` with key `"x_position"`.

    By default, observation is a `ndarray` with shape `(17,)` where the elements correspond to the following:

    | Num | Observation                                      | Min  | Max | Name (in corresponding XML file) | Joint | Unit                     |
    | --- | ------------------------------------------------ | ---- | --- | -------------------------------- | ----- | ------------------------ |
    | 0   | z-coordinate of the top (height of hopper)       | -Inf | Inf | rootz (torso)                    | slide | position (m)             |
    | 1   | angle of the top                                 | -Inf | Inf | rooty (torso)                    | hinge | angle (rad)              |
    | 2   | angle of the thigh joint                         | -Inf | Inf | thigh_joint                      | hinge | angle (rad)              |
    | 3   | angle of the leg joint                           | -Inf | Inf | leg_joint                        | hinge | angle (rad)              |
    | 4   | angle of the foot joint                          | -Inf | Inf | foot_joint                       | hinge | angle (rad)              |
    | 5   | angle of the left thigh joint                    | -Inf | Inf | thigh_left_joint                 | hinge | angle (rad)              |
    | 6   | angle of the left leg joint                      | -Inf | Inf | leg_left_joint                   | hinge | angle (rad)              |
    | 7   | angle of the left foot joint                     | -Inf | Inf | foot_left_joint                  | hinge | angle (rad)              |
    | 8   | velocity of the x-coordinate of the top          | -Inf | Inf | rootx                            | slide | velocity (m/s)           |
    | 9   | velocity of the z-coordinate (height) of the top | -Inf | Inf | rootz                            | slide | velocity (m/s)           |
    | 10  | angular velocity of the angle of the top         | -Inf | Inf | rooty                            | hinge | angular velocity (rad/s) |
    | 11  | angular velocity of the thigh hinge              | -Inf | Inf | thigh_joint                      | hinge | angular velocity (rad/s) |
    | 12  | angular velocity of the leg hinge                | -Inf | Inf | leg_joint                        | hinge | angular velocity (rad/s) |
    | 13  | angular velocity of the foot hinge               | -Inf | Inf | foot_joint                       | hinge | angular velocity (rad/s) |
    | 14  | angular velocity of the thigh hinge              | -Inf | Inf | thigh_left_joint                 | hinge | angular velocity (rad/s) |
    | 15  | angular velocity of the leg hinge                | -Inf | Inf | leg_left_joint                   | hinge | angular velocity (rad/s) |
    | 16  | angular velocity of the foot hinge               | -Inf | Inf | foot_left_joint                  | hinge | angular velocity (rad/s) |
    ### Rewards
    The reward consists of three parts:
    - *healthy_reward*: Every timestep that the walker is alive, it receives a fixed reward of value `healthy_reward`,
    - *forward_reward*: A reward of walking forward which is measured as
    *`forward_reward_weight` * (x-coordinate before action - x-coordinate after action)/dt*.
    *dt* is the time between actions and is dependeent on the frame_skip parameter
    (default is 4), where the frametime is 0.002 - making the default
    *dt = 4 * 0.002 = 0.008*. This reward would be positive if the walker walks forward (right) desired.
    - *ctrl_cost*: A cost for penalising the walker if it
    takes actions that are too large. It is measured as
    *`ctrl_cost_weight` * sum(action<sup>2</sup>)* where *`ctrl_cost_weight`* is
    a parameter set for the control and has a default value of 0.001

    The total reward returned is ***reward*** *=* *healthy_reward bonus + forward_reward - ctrl_cost* and `info` will also contain the individual reward terms

    ### Starting State
    All observations start in state
    (0.0, 1.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    with a uniform noise in the range of [-`reset_noise_scale`, `reset_noise_scale`] added to the values for stochasticity.

    ### Episode End
    The walker is said to be unhealthy if any of the following happens:

    1. Any of the state space values is no longer finite
    2. The height of the walker is ***not*** in the closed interval specified by `healthy_z_range`
    3. The absolute value of the angle (`observation[1]` if `exclude_current_positions_from_observation=False`, else `observation[2]`) is ***not*** in the closed interval specified by `healthy_angle_range`

    If `terminate_when_unhealthy=True` is passed during construction (which is the default),
    the episode ends when any of the following happens:

    1. Truncation: The episode duration reaches a 1000 timesteps
    2. Termination: The walker is unhealthy

    If `terminate_when_unhealthy=False` is passed, the episode is ended only when 1000 timesteps are exceeded.

    ### Arguments

    No additional arguments are currently supported in v2 and lower.

    ```
    env = gym.make('Walker2d-v4')
    ```

    v3 and beyond take gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc.

    ```
    env = gym.make('Walker2d-v4', ctrl_cost_weight=0.1, ....)
    ```

    | Parameter                                    | Type      | Default          | Description                                                                                                                                                       |
    | -------------------------------------------- | --------- | ---------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------- |
    | `xml_file`                                   | **str**   | `"walker2d.xml"` | Path to a MuJoCo model                                                                                                                                            |
    | `forward_reward_weight`                      | **float** | `1.0`            | Weight for _forward_reward_ term (see section on reward)                                                                                                          |
    | `ctrl_cost_weight`                           | **float** | `1e-3`           | Weight for _ctr_cost_ term (see section on reward)                                                                                                                |
    | `healthy_reward`                             | **float** | `1.0`            | Constant reward given if the ant is "healthy" after timestep                                                                                                      |
    | `terminate_when_unhealthy`                   | **bool**  | `True`           | If true, issue a done signal if the z-coordinate of the walker is no longer healthy                                                                               |
    | `healthy_z_range`                            | **tuple** | `(0.8, 2)`       | The z-coordinate of the top of the walker must be in this range to be considered healthy                                                                          |
    | `healthy_angle_range`                        | **tuple** | `(-1, 1)`        | The angle must be in this range to be considered healthy                                                                                                          |
    | `reset_noise_scale`                          | **float** | `5e-3`           | Scale of random perturbations of initial position and velocity (see section on Starting State)                                                                    |
    | `exclude_current_positions_from_observation` | **bool**  | `True`           | Whether or not to omit the x-coordinate from observations. Excluding the position can serve as an inductive bias to induce position-agnostic behavior in policies |


    ### Version History

    * v4: all mujoco environments now use the mujoco bindings in mujoco>=2.1.3
    * v3: support for gym.make kwargs such as xml_file, ctrl_cost_weight, reset_noise_scale etc. rgb rendering comes from tracking camera (so agent does not run away from screen)
    * v2: All continuous control environments now use mujoco_py >= 1.50
    * v1: max_time_steps raised to 1000 for robot based tasks. Added reward_threshold to environments.
    * v0: Initial versions release (1.0.0)
    """

    metadata = {
        "render_modes": [
            "human",
            "rgb_array",
            "depth_array",
        ],
        "render_fps": 125,
    }

    def __init__(
        self,
        forward_reward_weight=1.0,
        ctrl_cost_weight=1e-3,
        healthy_reward=1.0,
        terminate_when_unhealthy=True,
        healthy_z_range=(0.8, 2.0),
        healthy_angle_range=(-1.0, 1.0),
        reset_noise_scale=5e-3,
        exclude_current_positions_from_observation=True,
        **kwargs
    ):
        utils.EzPickle.__init__(
            self,
            forward_reward_weight,
            ctrl_cost_weight,
            healthy_reward,
            terminate_when_unhealthy,
            healthy_z_range,
            healthy_angle_range,
            reset_noise_scale,
            exclude_current_positions_from_observation,
            **kwargs
        )

        self._forward_reward_weight = forward_reward_weight
        self._ctrl_cost_weight = ctrl_cost_weight

        self._healthy_reward = healthy_reward
        self._terminate_when_unhealthy = terminate_when_unhealthy

        self._healthy_z_range = healthy_z_range
        self._healthy_angle_range = healthy_angle_range

        self._reset_noise_scale = reset_noise_scale

        self._exclude_current_positions_from_observation = (
            exclude_current_positions_from_observation
        )

        if exclude_current_positions_from_observation:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64
            )
        else:
            observation_space = Box(
                low=-np.inf, high=np.inf, shape=(18,), dtype=np.float64
            )

        MujocoEnv.__init__(
            self, "walker2d.xml", 4, observation_space=observation_space, **kwargs
        )

    @property
    def healthy_reward(self):
        return (
            float(self.is_healthy or self._terminate_when_unhealthy)
            * self._healthy_reward
        )

    def control_cost(self, action):
        control_cost = self._ctrl_cost_weight * np.sum(np.square(action))
        return control_cost

    @property
    def is_healthy(self):
        z, angle = self.data.qpos[1:3]

        min_z, max_z = self._healthy_z_range
        min_angle, max_angle = self._healthy_angle_range

        healthy_z = min_z < z < max_z
        healthy_angle = min_angle < angle < max_angle
        is_healthy = healthy_z and healthy_angle

        return is_healthy

    @property
    def terminated(self):
        terminated = not self.is_healthy if self._terminate_when_unhealthy else False
        return terminated

    def _get_obs(self):
        position = self.data.qpos.flat.copy()
        velocity = np.clip(self.data.qvel.flat.copy(), -10, 10)

        if self._exclude_current_positions_from_observation:
            position = position[1:]

        observation = np.concatenate((position, velocity)).ravel()
        return observation

    def step(self, action):
        x_position_before = self.data.qpos[0]
        self.do_simulation(action, self.frame_skip)
        x_position_after = self.data.qpos[0]
        x_velocity = (x_position_after - x_position_before) / self.dt

        ctrl_cost = self.control_cost(action)

        forward_reward = self._forward_reward_weight * x_velocity
        healthy_reward = self.healthy_reward

        rewards = forward_reward + healthy_reward
        costs = ctrl_cost

        observation = self._get_obs()
        reward = rewards - costs
        terminated = self.terminated
        info = {
            "x_position": x_position_after,
            "x_velocity": x_velocity,
        }

        if self.render_mode == "human":
            self.render()

        return observation, reward, terminated, False, info

    def reset_model(self):
        noise_low = -self._reset_noise_scale
        noise_high = self._reset_noise_scale

        qpos = self.init_qpos + self.np_random.uniform(
            low=noise_low, high=noise_high, size=self.model.nq
        )
        qvel = self.init_qvel + self.np_random.uniform(
            low=noise_low, high=noise_high, size=self.model.nv
        )

        self.set_state(qpos, qvel)

        observation = self._get_obs()
        return observation

    def viewer_setup(self):
        assert self.viewer is not None
        for key, value in DEFAULT_CAMERA_CONFIG.items():
            if isinstance(value, np.ndarray):
                getattr(self.viewer.cam, key)[:] = value
            else:
                setattr(self.viewer.cam, key, value)