File size: 10,940 Bytes
375a1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from contextlib import closing
from io import StringIO
from os import path
from typing import Optional

import numpy as np

from gym import Env, logger, spaces
from gym.envs.toy_text.utils import categorical_sample
from gym.error import DependencyNotInstalled

UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3


class CliffWalkingEnv(Env):
    """
    This is a simple implementation of the Gridworld Cliff
    reinforcement learning task.

    Adapted from Example 6.6 (page 106) from [Reinforcement Learning: An Introduction
    by Sutton and Barto](http://incompleteideas.net/book/bookdraft2018jan1.pdf).

    With inspiration from:
    [https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py]
    (https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py)

    ### Description
    The board is a 4x12 matrix, with (using NumPy matrix indexing):
    - [3, 0] as the start at bottom-left
    - [3, 11] as the goal at bottom-right
    - [3, 1..10] as the cliff at bottom-center

    If the agent steps on the cliff, it returns to the start.
    An episode terminates when the agent reaches the goal.

    ### Actions
    There are 4 discrete deterministic actions:
    - 0: move up
    - 1: move right
    - 2: move down
    - 3: move left

    ### Observations
    There are 3x12 + 1 possible states. In fact, the agent cannot be at the cliff, nor at the goal
    (as this results in the end of the episode).
    It remains all the positions of the first 3 rows plus the bottom-left cell.
    The observation is simply the current position encoded as [flattened index](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html).

    ### Reward
    Each time step incurs -1 reward, and stepping into the cliff incurs -100 reward.

    ### Arguments

    ```
    gym.make('CliffWalking-v0')
    ```

    ### Version History
    - v0: Initial version release
    """

    metadata = {
        "render_modes": ["human", "rgb_array", "ansi"],
        "render_fps": 4,
    }

    def __init__(self, render_mode: Optional[str] = None):
        self.shape = (4, 12)
        self.start_state_index = np.ravel_multi_index((3, 0), self.shape)

        self.nS = np.prod(self.shape)
        self.nA = 4

        # Cliff Location
        self._cliff = np.zeros(self.shape, dtype=bool)
        self._cliff[3, 1:-1] = True

        # Calculate transition probabilities and rewards
        self.P = {}
        for s in range(self.nS):
            position = np.unravel_index(s, self.shape)
            self.P[s] = {a: [] for a in range(self.nA)}
            self.P[s][UP] = self._calculate_transition_prob(position, [-1, 0])
            self.P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1])
            self.P[s][DOWN] = self._calculate_transition_prob(position, [1, 0])
            self.P[s][LEFT] = self._calculate_transition_prob(position, [0, -1])

        # Calculate initial state distribution
        # We always start in state (3, 0)
        self.initial_state_distrib = np.zeros(self.nS)
        self.initial_state_distrib[self.start_state_index] = 1.0

        self.observation_space = spaces.Discrete(self.nS)
        self.action_space = spaces.Discrete(self.nA)

        self.render_mode = render_mode

        # pygame utils
        self.cell_size = (60, 60)
        self.window_size = (
            self.shape[1] * self.cell_size[1],
            self.shape[0] * self.cell_size[0],
        )
        self.window_surface = None
        self.clock = None
        self.elf_images = None
        self.start_img = None
        self.goal_img = None
        self.cliff_img = None
        self.mountain_bg_img = None
        self.near_cliff_img = None
        self.tree_img = None

    def _limit_coordinates(self, coord: np.ndarray) -> np.ndarray:
        """Prevent the agent from falling out of the grid world."""
        coord[0] = min(coord[0], self.shape[0] - 1)
        coord[0] = max(coord[0], 0)
        coord[1] = min(coord[1], self.shape[1] - 1)
        coord[1] = max(coord[1], 0)
        return coord

    def _calculate_transition_prob(self, current, delta):
        """Determine the outcome for an action. Transition Prob is always 1.0.

        Args:
            current: Current position on the grid as (row, col)
            delta: Change in position for transition

        Returns:
            Tuple of ``(1.0, new_state, reward, terminated)``
        """
        new_position = np.array(current) + np.array(delta)
        new_position = self._limit_coordinates(new_position).astype(int)
        new_state = np.ravel_multi_index(tuple(new_position), self.shape)
        if self._cliff[tuple(new_position)]:
            return [(1.0, self.start_state_index, -100, False)]

        terminal_state = (self.shape[0] - 1, self.shape[1] - 1)
        is_terminated = tuple(new_position) == terminal_state
        return [(1.0, new_state, -1, is_terminated)]

    def step(self, a):
        transitions = self.P[self.s][a]
        i = categorical_sample([t[0] for t in transitions], self.np_random)
        p, s, r, t = transitions[i]
        self.s = s
        self.lastaction = a

        if self.render_mode == "human":
            self.render()
        return (int(s), r, t, False, {"prob": p})

    def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
        super().reset(seed=seed)
        self.s = categorical_sample(self.initial_state_distrib, self.np_random)
        self.lastaction = None

        if self.render_mode == "human":
            self.render()
        return int(self.s), {"prob": 1}

    def render(self):
        if self.render_mode is None:
            logger.warn(
                "You are calling render method without specifying any render mode. "
                "You can specify the render_mode at initialization, "
                f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
            )
        elif self.render_mode == "ansi":
            return self._render_text()
        else:
            return self._render_gui(self.render_mode)

    def _render_gui(self, mode):
        try:
            import pygame
        except ImportError:
            raise DependencyNotInstalled(
                "pygame is not installed, run `pip install gym[toy_text]`"
            )
        if self.window_surface is None:
            pygame.init()

            if mode == "human":
                pygame.display.init()
                pygame.display.set_caption("CliffWalking")
                self.window_surface = pygame.display.set_mode(self.window_size)
            else:  # rgb_array
                self.window_surface = pygame.Surface(self.window_size)
        if self.clock is None:
            self.clock = pygame.time.Clock()
        if self.elf_images is None:
            hikers = [
                path.join(path.dirname(__file__), "img/elf_up.png"),
                path.join(path.dirname(__file__), "img/elf_right.png"),
                path.join(path.dirname(__file__), "img/elf_down.png"),
                path.join(path.dirname(__file__), "img/elf_left.png"),
            ]
            self.elf_images = [
                pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
                for f_name in hikers
            ]
        if self.start_img is None:
            file_name = path.join(path.dirname(__file__), "img/stool.png")
            self.start_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.goal_img is None:
            file_name = path.join(path.dirname(__file__), "img/cookie.png")
            self.goal_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )
        if self.mountain_bg_img is None:
            bg_imgs = [
                path.join(path.dirname(__file__), "img/mountain_bg1.png"),
                path.join(path.dirname(__file__), "img/mountain_bg2.png"),
            ]
            self.mountain_bg_img = [
                pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
                for f_name in bg_imgs
            ]
        if self.near_cliff_img is None:
            near_cliff_imgs = [
                path.join(path.dirname(__file__), "img/mountain_near-cliff1.png"),
                path.join(path.dirname(__file__), "img/mountain_near-cliff2.png"),
            ]
            self.near_cliff_img = [
                pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
                for f_name in near_cliff_imgs
            ]
        if self.cliff_img is None:
            file_name = path.join(path.dirname(__file__), "img/mountain_cliff.png")
            self.cliff_img = pygame.transform.scale(
                pygame.image.load(file_name), self.cell_size
            )

        for s in range(self.nS):
            row, col = np.unravel_index(s, self.shape)
            pos = (col * self.cell_size[0], row * self.cell_size[1])
            check_board_mask = row % 2 ^ col % 2
            self.window_surface.blit(self.mountain_bg_img[check_board_mask], pos)

            if self._cliff[row, col]:
                self.window_surface.blit(self.cliff_img, pos)
            if row < self.shape[0] - 1 and self._cliff[row + 1, col]:
                self.window_surface.blit(self.near_cliff_img[check_board_mask], pos)
            if s == self.start_state_index:
                self.window_surface.blit(self.start_img, pos)
            if s == self.nS - 1:
                self.window_surface.blit(self.goal_img, pos)
            if s == self.s:
                elf_pos = (pos[0], pos[1] - 0.1 * self.cell_size[1])
                last_action = self.lastaction if self.lastaction is not None else 2
                self.window_surface.blit(self.elf_images[last_action], elf_pos)

        if mode == "human":
            pygame.event.pump()
            pygame.display.update()
            self.clock.tick(self.metadata["render_fps"])
        else:  # rgb_array
            return np.transpose(
                np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2)
            )

    def _render_text(self):
        outfile = StringIO()

        for s in range(self.nS):
            position = np.unravel_index(s, self.shape)
            if self.s == s:
                output = " x "
            # Print terminal state
            elif position == (3, 11):
                output = " T "
            elif self._cliff[position]:
                output = " C "
            else:
                output = " o "

            if position[1] == 0:
                output = output.lstrip()
            if position[1] == self.shape[1] - 1:
                output = output.rstrip()
                output += "\n"

            outfile.write(output)
        outfile.write("\n")

        with closing(outfile):
            return outfile.getvalue()