Spaces:
Running
Running
File size: 10,940 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from contextlib import closing
from io import StringIO
from os import path
from typing import Optional
import numpy as np
from gym import Env, logger, spaces
from gym.envs.toy_text.utils import categorical_sample
from gym.error import DependencyNotInstalled
UP = 0
RIGHT = 1
DOWN = 2
LEFT = 3
class CliffWalkingEnv(Env):
"""
This is a simple implementation of the Gridworld Cliff
reinforcement learning task.
Adapted from Example 6.6 (page 106) from [Reinforcement Learning: An Introduction
by Sutton and Barto](http://incompleteideas.net/book/bookdraft2018jan1.pdf).
With inspiration from:
[https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py]
(https://github.com/dennybritz/reinforcement-learning/blob/master/lib/envs/cliff_walking.py)
### Description
The board is a 4x12 matrix, with (using NumPy matrix indexing):
- [3, 0] as the start at bottom-left
- [3, 11] as the goal at bottom-right
- [3, 1..10] as the cliff at bottom-center
If the agent steps on the cliff, it returns to the start.
An episode terminates when the agent reaches the goal.
### Actions
There are 4 discrete deterministic actions:
- 0: move up
- 1: move right
- 2: move down
- 3: move left
### Observations
There are 3x12 + 1 possible states. In fact, the agent cannot be at the cliff, nor at the goal
(as this results in the end of the episode).
It remains all the positions of the first 3 rows plus the bottom-left cell.
The observation is simply the current position encoded as [flattened index](https://numpy.org/doc/stable/reference/generated/numpy.unravel_index.html).
### Reward
Each time step incurs -1 reward, and stepping into the cliff incurs -100 reward.
### Arguments
```
gym.make('CliffWalking-v0')
```
### Version History
- v0: Initial version release
"""
metadata = {
"render_modes": ["human", "rgb_array", "ansi"],
"render_fps": 4,
}
def __init__(self, render_mode: Optional[str] = None):
self.shape = (4, 12)
self.start_state_index = np.ravel_multi_index((3, 0), self.shape)
self.nS = np.prod(self.shape)
self.nA = 4
# Cliff Location
self._cliff = np.zeros(self.shape, dtype=bool)
self._cliff[3, 1:-1] = True
# Calculate transition probabilities and rewards
self.P = {}
for s in range(self.nS):
position = np.unravel_index(s, self.shape)
self.P[s] = {a: [] for a in range(self.nA)}
self.P[s][UP] = self._calculate_transition_prob(position, [-1, 0])
self.P[s][RIGHT] = self._calculate_transition_prob(position, [0, 1])
self.P[s][DOWN] = self._calculate_transition_prob(position, [1, 0])
self.P[s][LEFT] = self._calculate_transition_prob(position, [0, -1])
# Calculate initial state distribution
# We always start in state (3, 0)
self.initial_state_distrib = np.zeros(self.nS)
self.initial_state_distrib[self.start_state_index] = 1.0
self.observation_space = spaces.Discrete(self.nS)
self.action_space = spaces.Discrete(self.nA)
self.render_mode = render_mode
# pygame utils
self.cell_size = (60, 60)
self.window_size = (
self.shape[1] * self.cell_size[1],
self.shape[0] * self.cell_size[0],
)
self.window_surface = None
self.clock = None
self.elf_images = None
self.start_img = None
self.goal_img = None
self.cliff_img = None
self.mountain_bg_img = None
self.near_cliff_img = None
self.tree_img = None
def _limit_coordinates(self, coord: np.ndarray) -> np.ndarray:
"""Prevent the agent from falling out of the grid world."""
coord[0] = min(coord[0], self.shape[0] - 1)
coord[0] = max(coord[0], 0)
coord[1] = min(coord[1], self.shape[1] - 1)
coord[1] = max(coord[1], 0)
return coord
def _calculate_transition_prob(self, current, delta):
"""Determine the outcome for an action. Transition Prob is always 1.0.
Args:
current: Current position on the grid as (row, col)
delta: Change in position for transition
Returns:
Tuple of ``(1.0, new_state, reward, terminated)``
"""
new_position = np.array(current) + np.array(delta)
new_position = self._limit_coordinates(new_position).astype(int)
new_state = np.ravel_multi_index(tuple(new_position), self.shape)
if self._cliff[tuple(new_position)]:
return [(1.0, self.start_state_index, -100, False)]
terminal_state = (self.shape[0] - 1, self.shape[1] - 1)
is_terminated = tuple(new_position) == terminal_state
return [(1.0, new_state, -1, is_terminated)]
def step(self, a):
transitions = self.P[self.s][a]
i = categorical_sample([t[0] for t in transitions], self.np_random)
p, s, r, t = transitions[i]
self.s = s
self.lastaction = a
if self.render_mode == "human":
self.render()
return (int(s), r, t, False, {"prob": p})
def reset(self, *, seed: Optional[int] = None, options: Optional[dict] = None):
super().reset(seed=seed)
self.s = categorical_sample(self.initial_state_distrib, self.np_random)
self.lastaction = None
if self.render_mode == "human":
self.render()
return int(self.s), {"prob": 1}
def render(self):
if self.render_mode is None:
logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
elif self.render_mode == "ansi":
return self._render_text()
else:
return self._render_gui(self.render_mode)
def _render_gui(self, mode):
try:
import pygame
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[toy_text]`"
)
if self.window_surface is None:
pygame.init()
if mode == "human":
pygame.display.init()
pygame.display.set_caption("CliffWalking")
self.window_surface = pygame.display.set_mode(self.window_size)
else: # rgb_array
self.window_surface = pygame.Surface(self.window_size)
if self.clock is None:
self.clock = pygame.time.Clock()
if self.elf_images is None:
hikers = [
path.join(path.dirname(__file__), "img/elf_up.png"),
path.join(path.dirname(__file__), "img/elf_right.png"),
path.join(path.dirname(__file__), "img/elf_down.png"),
path.join(path.dirname(__file__), "img/elf_left.png"),
]
self.elf_images = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in hikers
]
if self.start_img is None:
file_name = path.join(path.dirname(__file__), "img/stool.png")
self.start_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
if self.goal_img is None:
file_name = path.join(path.dirname(__file__), "img/cookie.png")
self.goal_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
if self.mountain_bg_img is None:
bg_imgs = [
path.join(path.dirname(__file__), "img/mountain_bg1.png"),
path.join(path.dirname(__file__), "img/mountain_bg2.png"),
]
self.mountain_bg_img = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in bg_imgs
]
if self.near_cliff_img is None:
near_cliff_imgs = [
path.join(path.dirname(__file__), "img/mountain_near-cliff1.png"),
path.join(path.dirname(__file__), "img/mountain_near-cliff2.png"),
]
self.near_cliff_img = [
pygame.transform.scale(pygame.image.load(f_name), self.cell_size)
for f_name in near_cliff_imgs
]
if self.cliff_img is None:
file_name = path.join(path.dirname(__file__), "img/mountain_cliff.png")
self.cliff_img = pygame.transform.scale(
pygame.image.load(file_name), self.cell_size
)
for s in range(self.nS):
row, col = np.unravel_index(s, self.shape)
pos = (col * self.cell_size[0], row * self.cell_size[1])
check_board_mask = row % 2 ^ col % 2
self.window_surface.blit(self.mountain_bg_img[check_board_mask], pos)
if self._cliff[row, col]:
self.window_surface.blit(self.cliff_img, pos)
if row < self.shape[0] - 1 and self._cliff[row + 1, col]:
self.window_surface.blit(self.near_cliff_img[check_board_mask], pos)
if s == self.start_state_index:
self.window_surface.blit(self.start_img, pos)
if s == self.nS - 1:
self.window_surface.blit(self.goal_img, pos)
if s == self.s:
elf_pos = (pos[0], pos[1] - 0.1 * self.cell_size[1])
last_action = self.lastaction if self.lastaction is not None else 2
self.window_surface.blit(self.elf_images[last_action], elf_pos)
if mode == "human":
pygame.event.pump()
pygame.display.update()
self.clock.tick(self.metadata["render_fps"])
else: # rgb_array
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2)
)
def _render_text(self):
outfile = StringIO()
for s in range(self.nS):
position = np.unravel_index(s, self.shape)
if self.s == s:
output = " x "
# Print terminal state
elif position == (3, 11):
output = " T "
elif self._cliff[position]:
output = " C "
else:
output = " o "
if position[1] == 0:
output = output.lstrip()
if position[1] == self.shape[1] - 1:
output = output.rstrip()
output += "\n"
outfile.write(output)
outfile.write("\n")
with closing(outfile):
return outfile.getvalue()
|