Spaces:
Running
Running
File size: 76,459 Bytes
122d3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 |
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License: Standard 3-clause BSD; see "license.txt" for full license terms
# and contributor agreement.
"""
Dataset testing operations.
Tests all dataset operations, including creation, with the exception of:
1. Slicing operations for read and write, handled by module test_slicing
2. Type conversion for read and write (currently untested)
"""
import pathlib
import os
import sys
import numpy as np
import platform
import pytest
import warnings
from .common import ut, TestCase
from .data_files import get_data_file_path
from h5py import File, Group, Dataset
from h5py._hl.base import is_empty_dataspace, product
from h5py import h5f, h5t
from h5py.h5py_warnings import H5pyDeprecationWarning
from h5py import version
import h5py
import h5py._hl.selections as sel
class BaseDataset(TestCase):
def setUp(self):
self.f = File(self.mktemp(), 'w')
def tearDown(self):
if self.f:
self.f.close()
class TestRepr(BaseDataset):
"""
Feature: repr(Dataset) behaves sensibly
"""
def test_repr_open(self):
""" repr() works on live and dead datasets """
ds = self.f.create_dataset('foo', (4,))
self.assertIsInstance(repr(ds), str)
self.f.close()
self.assertIsInstance(repr(ds), str)
class TestCreateShape(BaseDataset):
"""
Feature: Datasets can be created from a shape only
"""
def test_create_scalar(self):
""" Create a scalar dataset """
dset = self.f.create_dataset('foo', ())
self.assertEqual(dset.shape, ())
def test_create_simple(self):
""" Create a size-1 dataset """
dset = self.f.create_dataset('foo', (1,))
self.assertEqual(dset.shape, (1,))
def test_create_integer(self):
""" Create a size-1 dataset with integer shape"""
dset = self.f.create_dataset('foo', 1)
self.assertEqual(dset.shape, (1,))
def test_create_extended(self):
""" Create an extended dataset """
dset = self.f.create_dataset('foo', (63,))
self.assertEqual(dset.shape, (63,))
self.assertEqual(dset.size, 63)
dset = self.f.create_dataset('bar', (6, 10))
self.assertEqual(dset.shape, (6, 10))
self.assertEqual(dset.size, (60))
def test_create_integer_extended(self):
""" Create an extended dataset """
dset = self.f.create_dataset('foo', 63)
self.assertEqual(dset.shape, (63,))
self.assertEqual(dset.size, 63)
dset = self.f.create_dataset('bar', (6, 10))
self.assertEqual(dset.shape, (6, 10))
self.assertEqual(dset.size, (60))
def test_default_dtype(self):
""" Confirm that the default dtype is float """
dset = self.f.create_dataset('foo', (63,))
self.assertEqual(dset.dtype, np.dtype('=f4'))
def test_missing_shape(self):
""" Missing shape raises TypeError """
with self.assertRaises(TypeError):
self.f.create_dataset('foo')
def test_long_double(self):
""" Confirm that the default dtype is float """
dset = self.f.create_dataset('foo', (63,), dtype=np.longdouble)
if platform.machine() in ['ppc64le']:
pytest.xfail("Storage of long double deactivated on %s" % platform.machine())
self.assertEqual(dset.dtype, np.longdouble)
@ut.skipIf(not hasattr(np, "complex256"), "No support for complex256")
def test_complex256(self):
""" Confirm that the default dtype is float """
dset = self.f.create_dataset('foo', (63,),
dtype=np.dtype('complex256'))
self.assertEqual(dset.dtype, np.dtype('complex256'))
def test_name_bytes(self):
dset = self.f.create_dataset(b'foo', (1,))
self.assertEqual(dset.shape, (1,))
dset2 = self.f.create_dataset(b'bar/baz', (2,))
self.assertEqual(dset2.shape, (2,))
class TestCreateData(BaseDataset):
"""
Feature: Datasets can be created from existing data
"""
def test_create_scalar(self):
""" Create a scalar dataset from existing array """
data = np.ones((), 'f')
dset = self.f.create_dataset('foo', data=data)
self.assertEqual(dset.shape, data.shape)
def test_create_extended(self):
""" Create an extended dataset from existing data """
data = np.ones((63,), 'f')
dset = self.f.create_dataset('foo', data=data)
self.assertEqual(dset.shape, data.shape)
def test_dataset_intermediate_group(self):
""" Create dataset with missing intermediate groups """
ds = self.f.create_dataset("/foo/bar/baz", shape=(10, 10), dtype='<i4')
self.assertIsInstance(ds, h5py.Dataset)
self.assertTrue("/foo/bar/baz" in self.f)
def test_reshape(self):
""" Create from existing data, and make it fit a new shape """
data = np.arange(30, dtype='f')
dset = self.f.create_dataset('foo', shape=(10, 3), data=data)
self.assertEqual(dset.shape, (10, 3))
self.assertArrayEqual(dset[...], data.reshape((10, 3)))
def test_appropriate_low_level_id(self):
" Binding Dataset to a non-DatasetID identifier fails with ValueError "
with self.assertRaises(ValueError):
Dataset(self.f['/'].id)
def check_h5_string(self, dset, cset, length):
tid = dset.id.get_type()
assert isinstance(tid, h5t.TypeStringID)
assert tid.get_cset() == cset
if length is None:
assert tid.is_variable_str()
else:
assert not tid.is_variable_str()
assert tid.get_size() == length
def test_create_bytestring(self):
""" Creating dataset with byte string yields vlen ASCII dataset """
def check_vlen_ascii(dset):
self.check_h5_string(dset, h5t.CSET_ASCII, length=None)
check_vlen_ascii(self.f.create_dataset('a', data=b'abc'))
check_vlen_ascii(self.f.create_dataset('b', data=[b'abc', b'def']))
check_vlen_ascii(self.f.create_dataset('c', data=[[b'abc'], [b'def']]))
check_vlen_ascii(self.f.create_dataset(
'd', data=np.array([b'abc', b'def'], dtype=object)
))
def test_create_np_s(self):
dset = self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='S3'))
self.check_h5_string(dset, h5t.CSET_ASCII, length=3)
def test_create_strings(self):
def check_vlen_utf8(dset):
self.check_h5_string(dset, h5t.CSET_UTF8, length=None)
check_vlen_utf8(self.f.create_dataset('a', data='abc'))
check_vlen_utf8(self.f.create_dataset('b', data=['abc', 'def']))
check_vlen_utf8(self.f.create_dataset('c', data=[['abc'], ['def']]))
check_vlen_utf8(self.f.create_dataset(
'd', data=np.array(['abc', 'def'], dtype=object)
))
def test_create_np_u(self):
with self.assertRaises(TypeError):
self.f.create_dataset('a', data=np.array([b'abc', b'def'], dtype='U3'))
def test_empty_create_via_None_shape(self):
self.f.create_dataset('foo', dtype='f')
self.assertTrue(is_empty_dataspace(self.f['foo'].id))
def test_empty_create_via_Empty_class(self):
self.f.create_dataset('foo', data=h5py.Empty(dtype='f'))
self.assertTrue(is_empty_dataspace(self.f['foo'].id))
def test_create_incompatible_data(self):
# Shape tuple is incompatible with data
with self.assertRaises(ValueError):
self.f.create_dataset('bar', shape=4, data= np.arange(3))
class TestReadDirectly:
"""
Feature: Read data directly from Dataset into a Numpy array
"""
@pytest.mark.parametrize(
'source_shape,dest_shape,source_sel,dest_sel',
[
((100,), (100,), np.s_[0:10], np.s_[50:60]),
((70,), (100,), np.s_[50:60], np.s_[90:]),
((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]),
((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]),
])
def test_read_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel):
source_values = np.arange(product(source_shape), dtype="int64").reshape(source_shape)
dset = writable_file.create_dataset("dset", source_shape, data=source_values)
arr = np.full(dest_shape, -1, dtype="int64")
expected = arr.copy()
expected[dest_sel] = source_values[source_sel]
dset.read_direct(arr, source_sel, dest_sel)
np.testing.assert_array_equal(arr, expected)
def test_no_sel(self, writable_file):
dset = writable_file.create_dataset("dset", (10,), data=np.arange(10, dtype="int64"))
arr = np.ones((10,), dtype="int64")
dset.read_direct(arr)
np.testing.assert_array_equal(arr, np.arange(10, dtype="int64"))
def test_empty(self, writable_file):
empty_dset = writable_file.create_dataset("edset", dtype='int64')
arr = np.ones((100,), 'int64')
with pytest.raises(TypeError):
empty_dset.read_direct(arr, np.s_[0:10], np.s_[50:60])
def test_wrong_shape(self, writable_file):
dset = writable_file.create_dataset("dset", (100,), dtype='int64')
arr = np.ones((200,))
with pytest.raises(TypeError):
dset.read_direct(arr)
def test_not_c_contiguous(self, writable_file):
dset = writable_file.create_dataset("dset", (10, 10), dtype='int64')
arr = np.ones((10, 10), order='F')
with pytest.raises(TypeError):
dset.read_direct(arr)
class TestWriteDirectly:
"""
Feature: Write Numpy array directly into Dataset
"""
@pytest.mark.parametrize(
'source_shape,dest_shape,source_sel,dest_sel',
[
((100,), (100,), np.s_[0:10], np.s_[50:60]),
((70,), (100,), np.s_[50:60], np.s_[90:]),
((30, 10), (20, 20), np.s_[:20, :], np.s_[:, :10]),
((5, 7, 9), (6,), np.s_[2, :6, 3], np.s_[:]),
])
def test_write_direct(self, writable_file, source_shape, dest_shape, source_sel, dest_sel):
dset = writable_file.create_dataset('dset', dest_shape, dtype='int32', fillvalue=-1)
arr = np.arange(product(source_shape)).reshape(source_shape)
expected = np.full(dest_shape, -1, dtype='int32')
expected[dest_sel] = arr[source_sel]
dset.write_direct(arr, source_sel, dest_sel)
np.testing.assert_array_equal(dset[:], expected)
def test_empty(self, writable_file):
empty_dset = writable_file.create_dataset("edset", dtype='int64')
with pytest.raises(TypeError):
empty_dset.write_direct(np.ones((100,)), np.s_[0:10], np.s_[50:60])
def test_wrong_shape(self, writable_file):
dset = writable_file.create_dataset("dset", (100,), dtype='int64')
arr = np.ones((200,))
with pytest.raises(TypeError):
dset.write_direct(arr)
def test_not_c_contiguous(self, writable_file):
dset = writable_file.create_dataset("dset", (10, 10), dtype='int64')
arr = np.ones((10, 10), order='F')
with pytest.raises(TypeError):
dset.write_direct(arr)
class TestCreateRequire(BaseDataset):
"""
Feature: Datasets can be created only if they don't exist in the file
"""
def test_create(self):
""" Create new dataset with no conflicts """
dset = self.f.require_dataset('foo', (10, 3), 'f')
self.assertIsInstance(dset, Dataset)
self.assertEqual(dset.shape, (10, 3))
def test_create_existing(self):
""" require_dataset yields existing dataset """
dset = self.f.require_dataset('foo', (10, 3), 'f')
dset2 = self.f.require_dataset('foo', (10, 3), 'f')
self.assertEqual(dset, dset2)
def test_create_1D(self):
""" require_dataset with integer shape yields existing dataset"""
dset = self.f.require_dataset('foo', 10, 'f')
dset2 = self.f.require_dataset('foo', 10, 'f')
self.assertEqual(dset, dset2)
dset = self.f.require_dataset('bar', (10,), 'f')
dset2 = self.f.require_dataset('bar', 10, 'f')
self.assertEqual(dset, dset2)
dset = self.f.require_dataset('baz', 10, 'f')
dset2 = self.f.require_dataset(b'baz', (10,), 'f')
self.assertEqual(dset, dset2)
def test_shape_conflict(self):
""" require_dataset with shape conflict yields TypeError """
self.f.create_dataset('foo', (10, 3), 'f')
with self.assertRaises(TypeError):
self.f.require_dataset('foo', (10, 4), 'f')
def test_type_conflict(self):
""" require_dataset with object type conflict yields TypeError """
self.f.create_group('foo')
with self.assertRaises(TypeError):
self.f.require_dataset('foo', (10, 3), 'f')
def test_dtype_conflict(self):
""" require_dataset with dtype conflict (strict mode) yields TypeError
"""
dset = self.f.create_dataset('foo', (10, 3), 'f')
with self.assertRaises(TypeError):
self.f.require_dataset('foo', (10, 3), 'S10')
def test_dtype_exact(self):
""" require_dataset with exactly dtype match """
dset = self.f.create_dataset('foo', (10, 3), 'f')
dset2 = self.f.require_dataset('foo', (10, 3), 'f', exact=True)
self.assertEqual(dset, dset2)
def test_dtype_close(self):
""" require_dataset with convertible type succeeds (non-strict mode)
"""
dset = self.f.create_dataset('foo', (10, 3), 'i4')
dset2 = self.f.require_dataset('foo', (10, 3), 'i2', exact=False)
self.assertEqual(dset, dset2)
self.assertEqual(dset2.dtype, np.dtype('i4'))
class TestCreateChunked(BaseDataset):
"""
Feature: Datasets can be created by manually specifying chunks
"""
def test_create_chunks(self):
""" Create via chunks tuple """
dset = self.f.create_dataset('foo', shape=(100,), chunks=(10,))
self.assertEqual(dset.chunks, (10,))
def test_create_chunks_integer(self):
""" Create via chunks integer """
dset = self.f.create_dataset('foo', shape=(100,), chunks=10)
self.assertEqual(dset.chunks, (10,))
def test_chunks_mismatch(self):
""" Illegal chunk size raises ValueError """
with self.assertRaises(ValueError):
self.f.create_dataset('foo', shape=(100,), chunks=(200,))
def test_chunks_false(self):
""" Chunked format required for given storage options """
with self.assertRaises(ValueError):
self.f.create_dataset('foo', shape=(10,), maxshape=100, chunks=False)
def test_chunks_scalar(self):
""" Attempting to create chunked scalar dataset raises TypeError """
with self.assertRaises(TypeError):
self.f.create_dataset('foo', shape=(), chunks=(50,))
def test_auto_chunks(self):
""" Auto-chunking of datasets """
dset = self.f.create_dataset('foo', shape=(20, 100), chunks=True)
self.assertIsInstance(dset.chunks, tuple)
self.assertEqual(len(dset.chunks), 2)
def test_auto_chunks_abuse(self):
""" Auto-chunking with pathologically large element sizes """
dset = self.f.create_dataset('foo', shape=(3,), dtype='S100000000', chunks=True)
self.assertEqual(dset.chunks, (1,))
def test_scalar_assignment(self):
""" Test scalar assignment of chunked dataset """
dset = self.f.create_dataset('foo', shape=(3, 50, 50),
dtype=np.int32, chunks=(1, 50, 50))
# test assignment of selection smaller than chunk size
dset[1, :, 40] = 10
self.assertTrue(np.all(dset[1, :, 40] == 10))
# test assignment of selection equal to chunk size
dset[1] = 11
self.assertTrue(np.all(dset[1] == 11))
# test assignment of selection bigger than chunk size
dset[0:2] = 12
self.assertTrue(np.all(dset[0:2] == 12))
def test_auto_chunks_no_shape(self):
""" Auto-chunking of empty datasets not allowed"""
with pytest.raises(TypeError, match='Empty') as err:
self.f.create_dataset('foo', dtype='S100', chunks=True)
with pytest.raises(TypeError, match='Empty') as err:
self.f.create_dataset('foo', dtype='S100', maxshape=20)
class TestCreateFillvalue(BaseDataset):
"""
Feature: Datasets can be created with fill value
"""
def test_create_fillval(self):
""" Fill value is reflected in dataset contents """
dset = self.f.create_dataset('foo', (10,), fillvalue=4.0)
self.assertEqual(dset[0], 4.0)
self.assertEqual(dset[7], 4.0)
def test_property(self):
""" Fill value is recoverable via property """
dset = self.f.create_dataset('foo', (10,), fillvalue=3.0)
self.assertEqual(dset.fillvalue, 3.0)
self.assertNotIsInstance(dset.fillvalue, np.ndarray)
def test_property_none(self):
""" .fillvalue property works correctly if not set """
dset = self.f.create_dataset('foo', (10,))
self.assertEqual(dset.fillvalue, 0)
def test_compound(self):
""" Fill value works with compound types """
dt = np.dtype([('a', 'f4'), ('b', 'i8')])
v = np.ones((1,), dtype=dt)[0]
dset = self.f.create_dataset('foo', (10,), dtype=dt, fillvalue=v)
self.assertEqual(dset.fillvalue, v)
self.assertAlmostEqual(dset[4], v)
def test_exc(self):
""" Bogus fill value raises ValueError """
with self.assertRaises(ValueError):
dset = self.f.create_dataset('foo', (10,),
dtype=[('a', 'i'), ('b', 'f')], fillvalue=42)
@pytest.mark.parametrize('dt,expected', [
(int, 0),
(np.int32, 0),
(np.int64, 0),
(float, 0.0),
(np.float32, 0.0),
(np.float64, 0.0),
(h5py.string_dtype(encoding='utf-8', length=5), b''),
(h5py.string_dtype(encoding='ascii', length=5), b''),
(h5py.string_dtype(encoding='utf-8'), b''),
(h5py.string_dtype(encoding='ascii'), b''),
(h5py.string_dtype(), b''),
])
def test_get_unset_fill_value(dt, expected, writable_file):
dset = writable_file.create_dataset('foo', (10,), dtype=dt)
assert dset.fillvalue == expected
class TestCreateNamedType(BaseDataset):
"""
Feature: Datasets created from an existing named type
"""
def test_named(self):
""" Named type object works and links the dataset to type """
self.f['type'] = np.dtype('f8')
dset = self.f.create_dataset('x', (100,), dtype=self.f['type'])
self.assertEqual(dset.dtype, np.dtype('f8'))
self.assertEqual(dset.id.get_type(), self.f['type'].id)
self.assertTrue(dset.id.get_type().committed())
@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed")
class TestCreateGzip(BaseDataset):
"""
Feature: Datasets created with gzip compression
"""
def test_gzip(self):
""" Create with explicit gzip options """
dset = self.f.create_dataset('foo', (20, 30), compression='gzip',
compression_opts=9)
self.assertEqual(dset.compression, 'gzip')
self.assertEqual(dset.compression_opts, 9)
def test_gzip_implicit(self):
""" Create with implicit gzip level (level 4) """
dset = self.f.create_dataset('foo', (20, 30), compression='gzip')
self.assertEqual(dset.compression, 'gzip')
self.assertEqual(dset.compression_opts, 4)
def test_gzip_number(self):
""" Create with gzip level by specifying integer """
dset = self.f.create_dataset('foo', (20, 30), compression=7)
self.assertEqual(dset.compression, 'gzip')
self.assertEqual(dset.compression_opts, 7)
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
try:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()
with self.assertRaises(ValueError):
dset = self.f.create_dataset('foo', (20, 30), compression=7)
finally:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals
def test_gzip_exc(self):
""" Illegal gzip level (explicit or implicit) raises ValueError """
with self.assertRaises((ValueError, RuntimeError)):
self.f.create_dataset('foo', (20, 30), compression=14)
with self.assertRaises(ValueError):
self.f.create_dataset('foo', (20, 30), compression=-4)
with self.assertRaises(ValueError):
self.f.create_dataset('foo', (20, 30), compression='gzip',
compression_opts=14)
@ut.skipIf('gzip' not in h5py.filters.encode, "DEFLATE is not installed")
class TestCreateCompressionNumber(BaseDataset):
"""
Feature: Datasets created with a compression code
"""
def test_compression_number(self):
""" Create with compression number of gzip (h5py.h5z.FILTER_DEFLATE) and a compression level of 7"""
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
try:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()
dset = self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE, compression_opts=(7,))
finally:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals
self.assertEqual(dset.compression, 'gzip')
self.assertEqual(dset.compression_opts, 7)
def test_compression_number_invalid(self):
""" Create with invalid compression numbers """
with self.assertRaises(ValueError) as e:
self.f.create_dataset('foo', (20, 30), compression=-999)
self.assertIn("Invalid filter", str(e.exception))
with self.assertRaises(ValueError) as e:
self.f.create_dataset('foo', (20, 30), compression=100)
self.assertIn("Unknown compression", str(e.exception))
original_compression_vals = h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS
try:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = tuple()
# Using gzip compression requires a compression level specified in compression_opts
with self.assertRaises(IndexError):
self.f.create_dataset('foo', (20, 30), compression=h5py.h5z.FILTER_DEFLATE)
finally:
h5py._hl.dataset._LEGACY_GZIP_COMPRESSION_VALS = original_compression_vals
@ut.skipIf('lzf' not in h5py.filters.encode, "LZF is not installed")
class TestCreateLZF(BaseDataset):
"""
Feature: Datasets created with LZF compression
"""
def test_lzf(self):
""" Create with explicit lzf """
dset = self.f.create_dataset('foo', (20, 30), compression='lzf')
self.assertEqual(dset.compression, 'lzf')
self.assertEqual(dset.compression_opts, None)
testdata = np.arange(100)
dset = self.f.create_dataset('bar', data=testdata, compression='lzf')
self.assertEqual(dset.compression, 'lzf')
self.assertEqual(dset.compression_opts, None)
self.f.flush() # Actually write to file
readdata = self.f['bar'][()]
self.assertArrayEqual(readdata, testdata)
def test_lzf_exc(self):
""" Giving lzf options raises ValueError """
with self.assertRaises(ValueError):
self.f.create_dataset('foo', (20, 30), compression='lzf',
compression_opts=4)
@ut.skipIf('szip' not in h5py.filters.encode, "SZIP is not installed")
class TestCreateSZIP(BaseDataset):
"""
Feature: Datasets created with LZF compression
"""
def test_szip(self):
""" Create with explicit szip """
dset = self.f.create_dataset('foo', (20, 30), compression='szip',
compression_opts=('ec', 16))
@ut.skipIf('shuffle' not in h5py.filters.encode, "SHUFFLE is not installed")
class TestCreateShuffle(BaseDataset):
"""
Feature: Datasets can use shuffling filter
"""
def test_shuffle(self):
""" Enable shuffle filter """
dset = self.f.create_dataset('foo', (20, 30), shuffle=True)
self.assertTrue(dset.shuffle)
@ut.skipIf('fletcher32' not in h5py.filters.encode, "FLETCHER32 is not installed")
class TestCreateFletcher32(BaseDataset):
"""
Feature: Datasets can use the fletcher32 filter
"""
def test_fletcher32(self):
""" Enable fletcher32 filter """
dset = self.f.create_dataset('foo', (20, 30), fletcher32=True)
self.assertTrue(dset.fletcher32)
@ut.skipIf('scaleoffset' not in h5py.filters.encode, "SCALEOFFSET is not installed")
class TestCreateScaleOffset(BaseDataset):
"""
Feature: Datasets can use the scale/offset filter
"""
def test_float_fails_without_options(self):
""" Ensure that a scale factor is required for scaleoffset compression of floating point data """
with self.assertRaises(ValueError):
dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=True)
def test_non_integer(self):
""" Check when scaleoffset is negetive"""
with self.assertRaises(ValueError):
dset = self.f.create_dataset('foo', (20, 30), dtype=float, scaleoffset=-0.1)
def test_unsupport_dtype(self):
""" Check when dtype is unsupported type"""
with self.assertRaises(TypeError):
dset = self.f.create_dataset('foo', (20, 30), dtype=bool, scaleoffset=True)
def test_float(self):
""" Scaleoffset filter works for floating point data """
scalefac = 4
shape = (100, 300)
range = 20 * 10 ** scalefac
testdata = (np.random.rand(*shape) - 0.5) * range
dset = self.f.create_dataset('foo', shape, dtype=np.float64, scaleoffset=scalefac)
# Dataset reports that scaleoffset is in use
assert dset.scaleoffset is not None
# Dataset round-trips
dset[...] = testdata
filename = self.f.filename
self.f.close()
self.f = h5py.File(filename, 'r')
readdata = self.f['foo'][...]
# Test that data round-trips to requested precision
self.assertArrayEqual(readdata, testdata, precision=10 ** (-scalefac))
# Test that the filter is actually active (i.e. compression is lossy)
assert not (readdata == testdata).all()
def test_int(self):
""" Scaleoffset filter works for integer data with default precision """
nbits = 12
shape = (100, 300)
testdata = np.random.randint(0, 2 ** nbits - 1, size=shape, dtype=np.int64)
# Create dataset; note omission of nbits (for library-determined precision)
dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=True)
# Dataset reports scaleoffset enabled
assert dset.scaleoffset is not None
# Data round-trips correctly and identically
dset[...] = testdata
filename = self.f.filename
self.f.close()
self.f = h5py.File(filename, 'r')
readdata = self.f['foo'][...]
self.assertArrayEqual(readdata, testdata)
def test_int_with_minbits(self):
""" Scaleoffset filter works for integer data with specified precision """
nbits = 12
shape = (100, 300)
testdata = np.random.randint(0, 2 ** nbits, size=shape, dtype=np.int64)
dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=nbits)
# Dataset reports scaleoffset enabled with correct precision
self.assertTrue(dset.scaleoffset == 12)
# Data round-trips correctly
dset[...] = testdata
filename = self.f.filename
self.f.close()
self.f = h5py.File(filename, 'r')
readdata = self.f['foo'][...]
self.assertArrayEqual(readdata, testdata)
def test_int_with_minbits_lossy(self):
""" Scaleoffset filter works for integer data with specified precision """
nbits = 12
shape = (100, 300)
testdata = np.random.randint(0, 2 ** (nbits + 1) - 1, size=shape, dtype=np.int64)
dset = self.f.create_dataset('foo', shape, dtype=np.int64, scaleoffset=nbits)
# Dataset reports scaleoffset enabled with correct precision
self.assertTrue(dset.scaleoffset == 12)
# Data can be written and read
dset[...] = testdata
filename = self.f.filename
self.f.close()
self.f = h5py.File(filename, 'r')
readdata = self.f['foo'][...]
# Compression is lossy
assert not (readdata == testdata).all()
class TestExternal(BaseDataset):
"""
Feature: Datasets with the external storage property
"""
def test_contents(self):
""" Create and access an external dataset """
shape = (6, 100)
testdata = np.random.random(shape)
# create a dataset in an external file and set it
ext_file = self.mktemp()
external = [(ext_file, 0, h5f.UNLIMITED)]
# ${ORIGIN} should be replaced by the parent dir of the HDF5 file
dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix="${ORIGIN}")
dset[...] = testdata
assert dset.external is not None
# verify file's existence, size, and contents
with open(ext_file, 'rb') as fid:
contents = fid.read()
assert contents == testdata.tobytes()
efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix()
parent = pathlib.Path(self.f.filename).parent.as_posix()
assert efile_prefix == parent
def test_contents_efile_prefix(self):
""" Create and access an external dataset using an efile_prefix"""
shape = (6, 100)
testdata = np.random.random(shape)
# create a dataset in an external file and set it
ext_file = self.mktemp()
# set only the basename, let the efile_prefix do the rest
external = [(os.path.basename(ext_file), 0, h5f.UNLIMITED)]
dset = self.f.create_dataset('foo', shape, dtype=testdata.dtype, external=external, efile_prefix=os.path.dirname(ext_file))
dset[...] = testdata
assert dset.external is not None
# verify file's existence, size, and contents
with open(ext_file, 'rb') as fid:
contents = fid.read()
assert contents == testdata.tobytes()
# check efile_prefix, only for 1.10.0 due to HDFFV-9716
if h5py.version.hdf5_version_tuple >= (1,10,0):
efile_prefix = pathlib.Path(dset.id.get_access_plist().get_efile_prefix().decode()).as_posix()
parent = pathlib.Path(ext_file).parent.as_posix()
assert efile_prefix == parent
dset2 = self.f.require_dataset('foo', shape, testdata.dtype, efile_prefix=os.path.dirname(ext_file))
assert dset2.external is not None
dset2[()] == testdata
def test_name_str(self):
""" External argument may be a file name str only """
self.f.create_dataset('foo', (6, 100), external=self.mktemp())
def test_name_path(self):
""" External argument may be a file name path only """
self.f.create_dataset('foo', (6, 100),
external=pathlib.Path(self.mktemp()))
def test_iter_multi(self):
""" External argument may be an iterable of multiple tuples """
ext_file = self.mktemp()
N = 100
external = iter((ext_file, x * 1000, 1000) for x in range(N))
dset = self.f.create_dataset('poo', (6, 100), external=external)
assert len(dset.external) == N
def test_invalid(self):
""" Test with invalid external lists """
shape = (6, 100)
ext_file = self.mktemp()
for exc_type, external in [
(TypeError, [ext_file]),
(TypeError, [ext_file, 0]),
(TypeError, [ext_file, 0, h5f.UNLIMITED]),
(ValueError, [(ext_file,)]),
(ValueError, [(ext_file, 0)]),
(ValueError, [(ext_file, 0, h5f.UNLIMITED, 0)]),
(TypeError, [(ext_file, 0, "h5f.UNLIMITED")]),
]:
with self.assertRaises(exc_type):
self.f.create_dataset('foo', shape, external=external)
def test_create_expandable(self):
""" Create expandable external dataset """
ext_file = self.mktemp()
shape = (128, 64)
maxshape = (None, 64)
exp_dset = self.f.create_dataset('foo', shape=shape, maxshape=maxshape,
external=ext_file)
assert exp_dset.chunks is None
assert exp_dset.shape == shape
assert exp_dset.maxshape == maxshape
class TestAutoCreate(BaseDataset):
"""
Feature: Datasets auto-created from data produce the correct types
"""
def assert_string_type(self, ds, cset, variable=True):
tid = ds.id.get_type()
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
self.assertEqual(tid.get_cset(), cset)
if variable:
assert tid.is_variable_str()
def test_vlen_bytes(self):
"""Assigning byte strings produces a vlen string ASCII dataset """
self.f['x'] = b"Hello there"
self.assert_string_type(self.f['x'], h5py.h5t.CSET_ASCII)
self.f['y'] = [b"a", b"bc"]
self.assert_string_type(self.f['y'], h5py.h5t.CSET_ASCII)
self.f['z'] = np.array([b"a", b"bc"], dtype=np.object_)
self.assert_string_type(self.f['z'], h5py.h5t.CSET_ASCII)
def test_vlen_unicode(self):
"""Assigning unicode strings produces a vlen string UTF-8 dataset """
self.f['x'] = "Hello there" + chr(0x2034)
self.assert_string_type(self.f['x'], h5py.h5t.CSET_UTF8)
self.f['y'] = ["a", "bc"]
self.assert_string_type(self.f['y'], h5py.h5t.CSET_UTF8)
# 2D array; this only works with an array, not nested lists
self.f['z'] = np.array([["a", "bc"]], dtype=np.object_)
self.assert_string_type(self.f['z'], h5py.h5t.CSET_UTF8)
def test_string_fixed(self):
""" Assignment of fixed-length byte string produces a fixed-length
ascii dataset """
self.f['x'] = np.bytes_("Hello there")
ds = self.f['x']
self.assert_string_type(ds, h5py.h5t.CSET_ASCII, variable=False)
self.assertEqual(ds.id.get_type().get_size(), 11)
class TestCreateLike(BaseDataset):
def test_no_chunks(self):
self.f['lol'] = np.arange(25).reshape(5, 5)
self.f.create_dataset_like('like_lol', self.f['lol'])
dslike = self.f['like_lol']
self.assertEqual(dslike.shape, (5, 5))
self.assertIs(dslike.chunks, None)
def test_track_times(self):
orig = self.f.create_dataset('honda', data=np.arange(12),
track_times=True)
self.assertNotEqual(0, h5py.h5g.get_objinfo(orig._id).mtime)
similar = self.f.create_dataset_like('hyundai', orig)
self.assertNotEqual(0, h5py.h5g.get_objinfo(similar._id).mtime)
orig = self.f.create_dataset('ibm', data=np.arange(12),
track_times=False)
self.assertEqual(0, h5py.h5g.get_objinfo(orig._id).mtime)
similar = self.f.create_dataset_like('lenovo', orig)
self.assertEqual(0, h5py.h5g.get_objinfo(similar._id).mtime)
def test_maxshape(self):
""" Test when other.maxshape != other.shape """
other = self.f.create_dataset('other', (10,), maxshape=20)
similar = self.f.create_dataset_like('sim', other)
self.assertEqual(similar.shape, (10,))
self.assertEqual(similar.maxshape, (20,))
class TestChunkIterator(BaseDataset):
def test_no_chunks(self):
dset = self.f.create_dataset("foo", ())
with self.assertRaises(TypeError):
dset.iter_chunks()
def test_1d(self):
dset = self.f.create_dataset("foo", (100,), chunks=(32,))
expected = ((slice(0,32,1),), (slice(32,64,1),), (slice(64,96,1),),
(slice(96,100,1),))
self.assertEqual(list(dset.iter_chunks()), list(expected))
expected = ((slice(50,64,1),), (slice(64,96,1),), (slice(96,97,1),))
self.assertEqual(list(dset.iter_chunks(np.s_[50:97])), list(expected))
def test_2d(self):
dset = self.f.create_dataset("foo", (100,100), chunks=(32,64))
expected = ((slice(0, 32, 1), slice(0, 64, 1)), (slice(0, 32, 1),
slice(64, 100, 1)), (slice(32, 64, 1), slice(0, 64, 1)),
(slice(32, 64, 1), slice(64, 100, 1)), (slice(64, 96, 1),
slice(0, 64, 1)), (slice(64, 96, 1), slice(64, 100, 1)),
(slice(96, 100, 1), slice(0, 64, 1)), (slice(96, 100, 1),
slice(64, 100, 1)))
self.assertEqual(list(dset.iter_chunks()), list(expected))
expected = ((slice(48, 52, 1), slice(40, 50, 1)),)
self.assertEqual(list(dset.iter_chunks(np.s_[48:52,40:50])), list(expected))
def test_2d_partial_slice(self):
dset = self.f.create_dataset("foo", (5,5), chunks=(2,2))
expected = ((slice(3, 4, 1), slice(3, 4, 1)),
(slice(3, 4, 1), slice(4, 5, 1)),
(slice(4, 5, 1), slice(3, 4, 1)),
(slice(4, 5, 1), slice(4, 5, 1)))
sel = slice(3,5)
self.assertEqual(list(dset.iter_chunks((sel, sel))), list(expected))
class TestResize(BaseDataset):
"""
Feature: Datasets created with "maxshape" may be resized
"""
def test_create(self):
""" Create dataset with "maxshape" """
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
self.assertIsNot(dset.chunks, None)
self.assertEqual(dset.maxshape, (20, 60))
def test_create_1D(self):
""" Create dataset with "maxshape" using integer maxshape"""
dset = self.f.create_dataset('foo', (20,), maxshape=20)
self.assertIsNot(dset.chunks, None)
self.assertEqual(dset.maxshape, (20,))
dset = self.f.create_dataset('bar', 20, maxshape=20)
self.assertEqual(dset.maxshape, (20,))
def test_resize(self):
""" Datasets may be resized up to maxshape """
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
self.assertEqual(dset.shape, (20, 30))
dset.resize((20, 50))
self.assertEqual(dset.shape, (20, 50))
dset.resize((20, 60))
self.assertEqual(dset.shape, (20, 60))
def test_resize_1D(self):
""" Datasets may be resized up to maxshape using integer maxshape"""
dset = self.f.create_dataset('foo', 20, maxshape=40)
self.assertEqual(dset.shape, (20,))
dset.resize((30,))
self.assertEqual(dset.shape, (30,))
def test_resize_over(self):
""" Resizing past maxshape triggers an exception """
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
with self.assertRaises(Exception):
dset.resize((20, 70))
def test_resize_nonchunked(self):
""" Resizing non-chunked dataset raises TypeError """
dset = self.f.create_dataset("foo", (20, 30))
with self.assertRaises(TypeError):
dset.resize((20, 60))
def test_resize_axis(self):
""" Resize specified axis """
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
dset.resize(50, axis=1)
self.assertEqual(dset.shape, (20, 50))
def test_axis_exc(self):
""" Illegal axis raises ValueError """
dset = self.f.create_dataset('foo', (20, 30), maxshape=(20, 60))
with self.assertRaises(ValueError):
dset.resize(50, axis=2)
def test_zero_dim(self):
""" Allow zero-length initial dims for unlimited axes (issue 111) """
dset = self.f.create_dataset('foo', (15, 0), maxshape=(15, None))
self.assertEqual(dset.shape, (15, 0))
self.assertEqual(dset.maxshape, (15, None))
class TestDtype(BaseDataset):
"""
Feature: Dataset dtype is available as .dtype property
"""
def test_dtype(self):
""" Retrieve dtype from dataset """
dset = self.f.create_dataset('foo', (5,), '|S10')
self.assertEqual(dset.dtype, np.dtype('|S10'))
def test_dtype_complex32(self):
""" Retrieve dtype from complex float16 dataset (gh-2156) """
# No native support in numpy as of v1.23.3, so expect compound type.
complex32 = np.dtype([('r', np.float16), ('i', np.float16)])
dset = self.f.create_dataset('foo', (5,), complex32)
self.assertEqual(dset.dtype, complex32)
class TestLen(BaseDataset):
"""
Feature: Size of first axis is available via Python's len
"""
def test_len(self):
""" Python len() (under 32 bits) """
dset = self.f.create_dataset('foo', (312, 15))
self.assertEqual(len(dset), 312)
def test_len_big(self):
""" Python len() vs Dataset.len() """
dset = self.f.create_dataset('foo', (2 ** 33, 15))
self.assertEqual(dset.shape, (2 ** 33, 15))
if sys.maxsize == 2 ** 31 - 1:
with self.assertRaises(OverflowError):
len(dset)
else:
self.assertEqual(len(dset), 2 ** 33)
self.assertEqual(dset.len(), 2 ** 33)
class TestIter(BaseDataset):
"""
Feature: Iterating over a dataset yields rows
"""
def test_iter(self):
""" Iterating over a dataset yields rows """
data = np.arange(30, dtype='f').reshape((10, 3))
dset = self.f.create_dataset('foo', data=data)
for x, y in zip(dset, data):
self.assertEqual(len(x), 3)
self.assertArrayEqual(x, y)
def test_iter_scalar(self):
""" Iterating over scalar dataset raises TypeError """
dset = self.f.create_dataset('foo', shape=())
with self.assertRaises(TypeError):
[x for x in dset]
class TestStrings(BaseDataset):
"""
Feature: Datasets created with vlen and fixed datatypes correctly
translate to and from HDF5
"""
def test_vlen_bytes(self):
""" Vlen bytes dataset maps to vlen ascii in the file """
dt = h5py.string_dtype(encoding='ascii')
ds = self.f.create_dataset('x', (100,), dtype=dt)
tid = ds.id.get_type()
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII)
string_info = h5py.check_string_dtype(ds.dtype)
self.assertEqual(string_info.encoding, 'ascii')
def test_vlen_bytes_fillvalue(self):
""" Vlen bytes dataset handles fillvalue """
dt = h5py.string_dtype(encoding='ascii')
fill_value = b'bar'
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
self.assertEqual(self.f['x'][0], fill_value)
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode())
self.assertEqual(self.f['x'].fillvalue, fill_value)
def test_vlen_unicode(self):
""" Vlen unicode dataset maps to vlen utf-8 in the file """
dt = h5py.string_dtype()
ds = self.f.create_dataset('x', (100,), dtype=dt)
tid = ds.id.get_type()
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8)
string_info = h5py.check_string_dtype(ds.dtype)
self.assertEqual(string_info.encoding, 'utf-8')
def test_vlen_unicode_fillvalue(self):
""" Vlen unicode dataset handles fillvalue """
dt = h5py.string_dtype()
fill_value = 'bár'
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
self.assertEqual(self.f['x'][0], fill_value.encode("utf-8"))
self.assertEqual(self.f['x'].asstr()[0], fill_value)
self.assertEqual(self.f['x'].fillvalue, fill_value.encode("utf-8"))
def test_fixed_ascii(self):
""" Fixed-length bytes dataset maps to fixed-length ascii in the file
"""
dt = np.dtype("|S10")
ds = self.f.create_dataset('x', (100,), dtype=dt)
tid = ds.id.get_type()
self.assertEqual(type(tid), h5py.h5t.TypeStringID)
self.assertFalse(tid.is_variable_str())
self.assertEqual(tid.get_size(), 10)
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_ASCII)
string_info = h5py.check_string_dtype(ds.dtype)
self.assertEqual(string_info.encoding, 'ascii')
self.assertEqual(string_info.length, 10)
def test_fixed_bytes_fillvalue(self):
""" Vlen bytes dataset handles fillvalue """
dt = h5py.string_dtype(encoding='ascii', length=10)
fill_value = b'bar'
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
self.assertEqual(self.f['x'][0], fill_value)
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode())
self.assertEqual(self.f['x'].fillvalue, fill_value)
def test_fixed_utf8(self):
dt = h5py.string_dtype(encoding='utf-8', length=5)
ds = self.f.create_dataset('x', (100,), dtype=dt)
tid = ds.id.get_type()
self.assertEqual(tid.get_cset(), h5py.h5t.CSET_UTF8)
s = 'cù'
ds[0] = s.encode('utf-8')
ds[1] = s
ds[2:4] = [s, s]
ds[4:6] = np.array([s, s], dtype=object)
ds[6:8] = np.array([s.encode('utf-8')] * 2, dtype=dt)
with self.assertRaises(TypeError):
ds[8:10] = np.array([s, s], dtype='U')
np.testing.assert_array_equal(ds[:8], np.array([s.encode('utf-8')] * 8, dtype='S'))
def test_fixed_utf_8_fillvalue(self):
""" Vlen unicode dataset handles fillvalue """
dt = h5py.string_dtype(encoding='utf-8', length=10)
fill_value = 'bár'.encode("utf-8")
ds = self.f.create_dataset('x', (100,), dtype=dt, fillvalue=fill_value)
self.assertEqual(self.f['x'][0], fill_value)
self.assertEqual(self.f['x'].asstr()[0], fill_value.decode("utf-8"))
self.assertEqual(self.f['x'].fillvalue, fill_value)
def test_fixed_unicode(self):
""" Fixed-length unicode datasets are unsupported (raise TypeError) """
dt = np.dtype("|U10")
with self.assertRaises(TypeError):
ds = self.f.create_dataset('x', (100,), dtype=dt)
def test_roundtrip_vlen_bytes(self):
""" writing and reading to vlen bytes dataset preserves type and content
"""
dt = h5py.string_dtype(encoding='ascii')
ds = self.f.create_dataset('x', (100,), dtype=dt)
data = b"Hello\xef"
ds[0] = data
out = ds[0]
self.assertEqual(type(out), bytes)
self.assertEqual(out, data)
def test_roundtrip_fixed_bytes(self):
""" Writing to and reading from fixed-length bytes dataset preserves
type and content """
dt = np.dtype("|S10")
ds = self.f.create_dataset('x', (100,), dtype=dt)
data = b"Hello\xef"
ds[0] = data
out = ds[0]
self.assertEqual(type(out), np.bytes_)
self.assertEqual(out, data)
def test_retrieve_vlen_unicode(self):
dt = h5py.string_dtype()
ds = self.f.create_dataset('x', (10,), dtype=dt)
data = "fàilte"
ds[0] = data
self.assertIsInstance(ds[0], bytes)
out = ds.asstr()[0]
self.assertIsInstance(out, str)
self.assertEqual(out, data)
def test_asstr(self):
ds = self.f.create_dataset('x', (10,), dtype=h5py.string_dtype())
data = "fàilte"
ds[0] = data
strwrap1 = ds.asstr('ascii')
with self.assertRaises(UnicodeDecodeError):
out = strwrap1[0]
# Different errors parameter
self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'filte')
# latin-1 will decode it but give the wrong text
self.assertNotEqual(ds.asstr('latin-1')[0], data)
# len of ds
self.assertEqual(10, len(ds.asstr()))
# Array output
np.testing.assert_array_equal(
ds.asstr()[:1], np.array([data], dtype=object)
)
np.testing.assert_array_equal(
np.asarray(ds.asstr())[:1], np.array([data], dtype=object)
)
def test_asstr_fixed(self):
dt = h5py.string_dtype(length=5)
ds = self.f.create_dataset('x', (10,), dtype=dt)
data = 'cù'
ds[0] = np.array(data.encode('utf-8'), dtype=dt)
self.assertIsInstance(ds[0], np.bytes_)
out = ds.asstr()[0]
self.assertIsInstance(out, str)
self.assertEqual(out, data)
# Different errors parameter
self.assertEqual(ds.asstr('ascii', 'ignore')[0], 'c')
# latin-1 will decode it but give the wrong text
self.assertNotEqual(ds.asstr('latin-1')[0], data)
# Array output
np.testing.assert_array_equal(
ds.asstr()[:1], np.array([data], dtype=object)
)
def test_unicode_write_error(self):
"""Encoding error when writing a non-ASCII string to an ASCII vlen dataset"""
dt = h5py.string_dtype('ascii')
ds = self.f.create_dataset('x', (100,), dtype=dt)
data = "fàilte"
with self.assertRaises(UnicodeEncodeError):
ds[0] = data
def test_unicode_write_bytes(self):
""" Writing valid utf-8 byte strings to a unicode vlen dataset is OK
"""
dt = h5py.string_dtype()
ds = self.f.create_dataset('x', (100,), dtype=dt)
data = (u"Hello there" + chr(0x2034)).encode('utf8')
ds[0] = data
out = ds[0]
self.assertEqual(type(out), bytes)
self.assertEqual(out, data)
def test_vlen_bytes_write_ascii_str(self):
""" Writing an ascii str to ascii vlen dataset is OK
"""
dt = h5py.string_dtype('ascii')
ds = self.f.create_dataset('x', (100,), dtype=dt)
data = "ASCII string"
ds[0] = data
out = ds[0]
self.assertEqual(type(out), bytes)
self.assertEqual(out, data.encode('ascii'))
class TestCompound(BaseDataset):
"""
Feature: Compound types correctly round-trip
"""
def test_rt(self):
""" Compound types are read back in correct order (issue 236)"""
dt = np.dtype([ ('weight', np.float64),
('cputime', np.float64),
('walltime', np.float64),
('parents_offset', np.uint32),
('n_parents', np.uint32),
('status', np.uint8),
('endpoint_type', np.uint8), ])
testdata = np.ndarray((16,), dtype=dt)
for key in dt.fields:
testdata[key] = np.random.random((16,)) * 100
self.f['test'] = testdata
outdata = self.f['test'][...]
self.assertTrue(np.all(outdata == testdata))
self.assertEqual(outdata.dtype, testdata.dtype)
def test_assign(self):
dt = np.dtype([ ('weight', (np.float64, 3)),
('endpoint_type', np.uint8), ])
testdata = np.ndarray((16,), dtype=dt)
for key in dt.fields:
testdata[key] = np.random.random(size=testdata[key].shape) * 100
ds = self.f.create_dataset('test', (16,), dtype=dt)
for key in dt.fields:
ds[key] = testdata[key]
outdata = self.f['test'][...]
self.assertTrue(np.all(outdata == testdata))
self.assertEqual(outdata.dtype, testdata.dtype)
def test_fields(self):
dt = np.dtype([
('x', np.float64),
('y', np.float64),
('z', np.float64),
])
testdata = np.ndarray((16,), dtype=dt)
for key in dt.fields:
testdata[key] = np.random.random((16,)) * 100
self.f['test'] = testdata
# Extract multiple fields
np.testing.assert_array_equal(
self.f['test'].fields(['x', 'y'])[:], testdata[['x', 'y']]
)
# Extract single field
np.testing.assert_array_equal(
self.f['test'].fields('x')[:], testdata['x']
)
# Check __array__() method of fields wrapper
np.testing.assert_array_equal(
np.asarray(self.f['test'].fields(['x', 'y'])), testdata[['x', 'y']]
)
# Check type conversion of __array__() method
dt_int = np.dtype([('x', np.int32)])
np.testing.assert_array_equal(
np.asarray(self.f['test'].fields(['x']), dtype=dt_int),
testdata[['x']].astype(dt_int)
)
# Check len() on fields wrapper
assert len(self.f['test'].fields('x')) == 16
def test_nested_compound_vlen(self):
dt_inner = np.dtype([('a', h5py.vlen_dtype(np.int32)),
('b', h5py.vlen_dtype(np.int32))])
dt = np.dtype([('f1', h5py.vlen_dtype(dt_inner)),
('f2', np.int64)])
inner1 = (np.array(range(1, 3), dtype=np.int32),
np.array(range(6, 9), dtype=np.int32))
inner2 = (np.array(range(10, 14), dtype=np.int32),
np.array(range(16, 21), dtype=np.int32))
data = np.array([(np.array([inner1, inner2], dtype=dt_inner), 2),
(np.array([inner1], dtype=dt_inner), 3)],
dtype=dt)
self.f["ds"] = data
out = self.f["ds"]
# Specifying check_alignment=False because vlen fields have 8 bytes of padding
# because the vlen datatype in hdf5 occupies 16 bytes
self.assertArrayEqual(out, data, check_alignment=False)
class TestSubarray(BaseDataset):
def test_write_list(self):
ds = self.f.create_dataset("a", (1,), dtype="3int8")
ds[0] = [1, 2, 3]
np.testing.assert_array_equal(ds[:], [[1, 2, 3]])
ds[:] = [[4, 5, 6]]
np.testing.assert_array_equal(ds[:], [[4, 5, 6]])
def test_write_array(self):
ds = self.f.create_dataset("a", (1,), dtype="3int8")
ds[0] = np.array([1, 2, 3])
np.testing.assert_array_equal(ds[:], [[1, 2, 3]])
ds[:] = np.array([[4, 5, 6]])
np.testing.assert_array_equal(ds[:], [[4, 5, 6]])
class TestEnum(BaseDataset):
"""
Feature: Enum datatype info is preserved, read/write as integer
"""
EDICT = {'RED': 0, 'GREEN': 1, 'BLUE': 42}
def test_create(self):
""" Enum datasets can be created and type correctly round-trips """
dt = h5py.enum_dtype(self.EDICT, basetype='i')
ds = self.f.create_dataset('x', (100, 100), dtype=dt)
dt2 = ds.dtype
dict2 = h5py.check_enum_dtype(dt2)
self.assertEqual(dict2, self.EDICT)
def test_readwrite(self):
""" Enum datasets can be read/written as integers """
dt = h5py.enum_dtype(self.EDICT, basetype='i4')
ds = self.f.create_dataset('x', (100, 100), dtype=dt)
ds[35, 37] = 42
ds[1, :] = 1
self.assertEqual(ds[35, 37], 42)
self.assertArrayEqual(ds[1, :], np.array((1,) * 100, dtype='i4'))
class TestFloats(BaseDataset):
"""
Test support for mini and extended-precision floats
"""
def _exectest(self, dt):
dset = self.f.create_dataset('x', (100,), dtype=dt)
self.assertEqual(dset.dtype, dt)
data = np.ones((100,), dtype=dt)
dset[...] = data
self.assertArrayEqual(dset[...], data)
@ut.skipUnless(hasattr(np, 'float16'), "NumPy float16 support required")
def test_mini(self):
""" Mini-floats round trip """
self._exectest(np.dtype('float16'))
# TODO: move these tests to test_h5t
def test_mini_mapping(self):
""" Test mapping for float16 """
if hasattr(np, 'float16'):
self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f2'))
else:
self.assertEqual(h5t.IEEE_F16LE.dtype, np.dtype('<f4'))
class TestTrackTimes(BaseDataset):
"""
Feature: track_times
"""
def test_disable_track_times(self):
""" check that when track_times=False, the time stamp=0 (Jan 1, 1970) """
ds = self.f.create_dataset('foo', (4,), track_times=False)
ds_mtime = h5py.h5g.get_objinfo(ds._id).mtime
self.assertEqual(0, ds_mtime)
def test_invalid_track_times(self):
""" check that when give track_times an invalid value """
with self.assertRaises(TypeError):
self.f.create_dataset('foo', (4,), track_times='null')
class TestZeroShape(BaseDataset):
"""
Features of datasets with (0,)-shape axes
"""
def test_array_conversion(self):
""" Empty datasets can be converted to NumPy arrays """
ds = self.f.create_dataset('x', 0, maxshape=None)
self.assertEqual(ds.shape, np.array(ds).shape)
ds = self.f.create_dataset('y', (0,), maxshape=(None,))
self.assertEqual(ds.shape, np.array(ds).shape)
ds = self.f.create_dataset('z', (0, 0), maxshape=(None, None))
self.assertEqual(ds.shape, np.array(ds).shape)
def test_reading(self):
""" Slicing into empty datasets works correctly """
dt = [('a', 'f'), ('b', 'i')]
ds = self.f.create_dataset('x', (0,), dtype=dt, maxshape=(None,))
arr = np.empty((0,), dtype=dt)
self.assertEqual(ds[...].shape, arr.shape)
self.assertEqual(ds[...].dtype, arr.dtype)
self.assertEqual(ds[()].shape, arr.shape)
self.assertEqual(ds[()].dtype, arr.dtype)
# https://github.com/h5py/h5py/issues/1492
empty_regionref_xfail = pytest.mark.xfail(
h5py.version.hdf5_version_tuple == (1, 10, 6),
reason="Issue with empty region refs in HDF5 1.10.6",
)
class TestRegionRefs(BaseDataset):
"""
Various features of region references
"""
def setUp(self):
BaseDataset.setUp(self)
self.data = np.arange(100 * 100).reshape((100, 100))
self.dset = self.f.create_dataset('x', data=self.data)
self.dset[...] = self.data
def test_create_ref(self):
""" Region references can be used as slicing arguments """
slic = np.s_[25:35, 10:100:5]
ref = self.dset.regionref[slic]
self.assertArrayEqual(self.dset[ref], self.data[slic])
@empty_regionref_xfail
def test_empty_region(self):
ref = self.dset.regionref[:0]
out = self.dset[ref]
assert out.size == 0
# Ideally we should preserve shape (0, 100), but it seems this is lost.
@empty_regionref_xfail
def test_scalar_dataset(self):
ds = self.f.create_dataset("scalar", data=1.0, dtype='f4')
sid = h5py.h5s.create(h5py.h5s.SCALAR)
# Deselected
sid.select_none()
ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid)
assert ds[ref] == h5py.Empty(np.dtype('f4'))
# Selected
sid.select_all()
ref = h5py.h5r.create(ds.id, b'.', h5py.h5r.DATASET_REGION, sid)
assert ds[ref] == ds[()]
def test_ref_shape(self):
""" Region reference shape and selection shape """
slic = np.s_[25:35, 10:100:5]
ref = self.dset.regionref[slic]
self.assertEqual(self.dset.regionref.shape(ref), self.dset.shape)
self.assertEqual(self.dset.regionref.selection(ref), (10, 18))
class TestAstype(BaseDataset):
""".astype() wrapper & context manager
"""
def test_astype_wrapper(self):
dset = self.f.create_dataset('x', (100,), dtype='i2')
dset[...] = np.arange(100)
arr = dset.astype('f4')[:]
self.assertArrayEqual(arr, np.arange(100, dtype='f4'))
def test_astype_wrapper_len(self):
dset = self.f.create_dataset('x', (100,), dtype='i2')
dset[...] = np.arange(100)
self.assertEqual(100, len(dset.astype('f4')))
def test_astype_wrapper_asarray(self):
dset = self.f.create_dataset('x', (100,), dtype='i2')
dset[...] = np.arange(100)
arr = np.asarray(dset.astype('f4'), dtype='i2')
self.assertArrayEqual(arr, np.arange(100, dtype='i2'))
class TestScalarCompound(BaseDataset):
"""
Retrieval of a single field from a scalar compound dataset should
strip the field info
"""
def test_scalar_compound(self):
dt = np.dtype([('a', 'i')])
dset = self.f.create_dataset('x', (), dtype=dt)
self.assertEqual(dset['a'].dtype, np.dtype('i'))
class TestVlen(BaseDataset):
def test_int(self):
dt = h5py.vlen_dtype(int)
ds = self.f.create_dataset('vlen', (4,), dtype=dt)
ds[0] = np.arange(3)
ds[1] = np.arange(0)
ds[2] = [1, 2, 3]
ds[3] = np.arange(1)
self.assertArrayEqual(ds[0], np.arange(3))
self.assertArrayEqual(ds[1], np.arange(0))
self.assertArrayEqual(ds[2], np.array([1, 2, 3]))
self.assertArrayEqual(ds[1], np.arange(0))
ds[0:2] = np.array([np.arange(5), np.arange(4)], dtype=object)
self.assertArrayEqual(ds[0], np.arange(5))
self.assertArrayEqual(ds[1], np.arange(4))
ds[0:2] = np.array([np.arange(3), np.arange(3)])
self.assertArrayEqual(ds[0], np.arange(3))
self.assertArrayEqual(ds[1], np.arange(3))
def test_reuse_from_other(self):
dt = h5py.vlen_dtype(int)
ds = self.f.create_dataset('vlen', (1,), dtype=dt)
self.f.create_dataset('vlen2', (1,), ds[()].dtype)
def test_reuse_struct_from_other(self):
dt = [('a', int), ('b', h5py.vlen_dtype(int))]
ds = self.f.create_dataset('vlen', (1,), dtype=dt)
fname = self.f.filename
self.f.close()
self.f = h5py.File(fname, 'a')
self.f.create_dataset('vlen2', (1,), self.f['vlen']['b'][()].dtype)
def test_convert(self):
dt = h5py.vlen_dtype(int)
ds = self.f.create_dataset('vlen', (3,), dtype=dt)
ds[0] = np.array([1.4, 1.2])
ds[1] = np.array([1.2])
ds[2] = [1.2, 2, 3]
self.assertArrayEqual(ds[0], np.array([1, 1]))
self.assertArrayEqual(ds[1], np.array([1]))
self.assertArrayEqual(ds[2], np.array([1, 2, 3]))
ds[0:2] = np.array([[0.1, 1.1, 2.1, 3.1, 4], np.arange(4)], dtype=object)
self.assertArrayEqual(ds[0], np.arange(5))
self.assertArrayEqual(ds[1], np.arange(4))
ds[0:2] = np.array([np.array([0.1, 1.2, 2.2]),
np.array([0.2, 1.2, 2.2])])
self.assertArrayEqual(ds[0], np.arange(3))
self.assertArrayEqual(ds[1], np.arange(3))
def test_multidim(self):
dt = h5py.vlen_dtype(int)
ds = self.f.create_dataset('vlen', (2, 2), dtype=dt)
ds[0, 0] = np.arange(1)
ds[:, :] = np.array([[np.arange(3), np.arange(2)],
[np.arange(1), np.arange(2)]], dtype=object)
ds[:, :] = np.array([[np.arange(2), np.arange(2)],
[np.arange(2), np.arange(2)]])
def _help_float_testing(self, np_dt, dataset_name='vlen'):
"""
Helper for testing various vlen numpy data types.
:param np_dt: Numpy datatype to test
:param dataset_name: String name of the dataset to create for testing.
"""
dt = h5py.vlen_dtype(np_dt)
ds = self.f.create_dataset(dataset_name, (5,), dtype=dt)
# Create some arrays, and assign them to the dataset
array_0 = np.array([1., 2., 30.], dtype=np_dt)
array_1 = np.array([100.3, 200.4, 98.1, -10.5, -300.0], dtype=np_dt)
# Test that a numpy array of different type gets cast correctly
array_2 = np.array([1, 2, 8], dtype=np.dtype('int32'))
casted_array_2 = array_2.astype(np_dt)
# Test that we can set a list of floats.
list_3 = [1., 2., 900., 0., -0.5]
list_array_3 = np.array(list_3, dtype=np_dt)
# Test that a list of integers gets casted correctly
list_4 = [-1, -100, 0, 1, 9999, 70]
list_array_4 = np.array(list_4, dtype=np_dt)
ds[0] = array_0
ds[1] = array_1
ds[2] = array_2
ds[3] = list_3
ds[4] = list_4
self.assertArrayEqual(array_0, ds[0])
self.assertArrayEqual(array_1, ds[1])
self.assertArrayEqual(casted_array_2, ds[2])
self.assertArrayEqual(list_array_3, ds[3])
self.assertArrayEqual(list_array_4, ds[4])
# Test that we can reassign arrays in the dataset
list_array_3 = np.array([0.3, 2.2], dtype=np_dt)
ds[0] = list_array_3[:]
self.assertArrayEqual(list_array_3, ds[0])
# Make sure we can close the file.
self.f.flush()
self.f.close()
def test_numpy_float16(self):
np_dt = np.dtype('float16')
self._help_float_testing(np_dt)
def test_numpy_float32(self):
np_dt = np.dtype('float32')
self._help_float_testing(np_dt)
def test_numpy_float64_from_dtype(self):
np_dt = np.dtype('float64')
self._help_float_testing(np_dt)
def test_numpy_float64_2(self):
np_dt = np.float64
self._help_float_testing(np_dt)
def test_non_contiguous_arrays(self):
"""Test that non-contiguous arrays are stored correctly"""
self.f.create_dataset('nc', (10,), dtype=h5py.vlen_dtype('bool'))
x = np.array([True, False, True, True, False, False, False])
self.f['nc'][0] = x[::2]
assert all(self.f['nc'][0] == x[::2]), f"{self.f['nc'][0]} != {x[::2]}"
self.f.create_dataset('nc2', (10,), dtype=h5py.vlen_dtype('int8'))
y = np.array([2, 4, 1, 5, -1, 3, 7])
self.f['nc2'][0] = y[::2]
assert all(self.f['nc2'][0] == y[::2]), f"{self.f['nc2'][0]} != {y[::2]}"
class TestLowOpen(BaseDataset):
def test_get_access_list(self):
""" Test H5Dget_access_plist """
ds = self.f.create_dataset('foo', (4,))
p_list = ds.id.get_access_plist()
def test_dapl(self):
""" Test the dapl keyword to h5d.open """
dapl = h5py.h5p.create(h5py.h5p.DATASET_ACCESS)
dset = self.f.create_dataset('x', (100,))
del dset
dsid = h5py.h5d.open(self.f.id, b'x', dapl)
self.assertIsInstance(dsid, h5py.h5d.DatasetID)
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 10, 5),
"chunk info requires HDF5 >= 1.10.5")
def test_get_chunk_details():
from io import BytesIO
buf = BytesIO()
with h5py.File(buf, 'w') as fout:
fout.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4')
fout['test'][:] = 1
buf.seek(0)
with h5py.File(buf, 'r') as fin:
ds = fin['test'].id
assert ds.get_num_chunks() == 100
for j in range(100):
offset = tuple(np.array(np.unravel_index(j, (10, 10))) * 10)
si = ds.get_chunk_info(j)
assert si.chunk_offset == offset
assert si.filter_mask == 0
assert si.byte_offset is not None
assert si.size > 0
si = ds.get_chunk_info_by_coord((0, 0))
assert si.chunk_offset == (0, 0)
assert si.filter_mask == 0
assert si.byte_offset is not None
assert si.size > 0
@ut.skipUnless(h5py.version.hdf5_version_tuple >= (1, 12, 3) or
(h5py.version.hdf5_version_tuple >= (1, 10, 10) and h5py.version.hdf5_version_tuple < (1, 10, 99)),
"chunk iteration requires HDF5 1.10.10 and later 1.10, or 1.12.3 and later")
def test_chunk_iter():
"""H5Dchunk_iter() for chunk information"""
from io import BytesIO
buf = BytesIO()
with h5py.File(buf, 'w') as f:
f.create_dataset('test', shape=(100, 100), chunks=(10, 10), dtype='i4')
f['test'][:] = 1
buf.seek(0)
with h5py.File(buf, 'r') as f:
dsid = f['test'].id
num_chunks = dsid.get_num_chunks()
assert num_chunks == 100
ci = {}
for j in range(num_chunks):
si = dsid.get_chunk_info(j)
ci[si.chunk_offset] = si
def callback(chunk_info):
known = ci[chunk_info.chunk_offset]
assert chunk_info.chunk_offset == known.chunk_offset
assert chunk_info.filter_mask == known.filter_mask
assert chunk_info.byte_offset == known.byte_offset
assert chunk_info.size == known.size
dsid.chunk_iter(callback)
def test_empty_shape(writable_file):
ds = writable_file.create_dataset('empty', dtype='int32')
assert ds.shape is None
assert ds.maxshape is None
def test_zero_storage_size():
# https://github.com/h5py/h5py/issues/1475
from io import BytesIO
buf = BytesIO()
with h5py.File(buf, 'w') as fout:
fout.create_dataset('empty', dtype='uint8')
buf.seek(0)
with h5py.File(buf, 'r') as fin:
assert fin['empty'].chunks is None
assert fin['empty'].id.get_offset() is None
assert fin['empty'].id.get_storage_size() == 0
def test_python_int_uint64(writable_file):
# https://github.com/h5py/h5py/issues/1547
data = [np.iinfo(np.int64).max, np.iinfo(np.int64).max + 1]
# Check creating a new dataset
ds = writable_file.create_dataset('x', data=data, dtype=np.uint64)
assert ds.dtype == np.dtype(np.uint64)
np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64))
# Check writing to an existing dataset
ds[:] = data
np.testing.assert_array_equal(ds[:], np.array(data, dtype=np.uint64))
def test_setitem_fancy_indexing(writable_file):
# https://github.com/h5py/h5py/issues/1593
arr = writable_file.create_dataset('data', (5, 1000, 2), dtype=np.uint8)
block = np.random.randint(255, size=(5, 3, 2))
arr[:, [0, 2, 4], ...] = block
def test_vlen_spacepad():
with File(get_data_file_path("vlen_string_dset.h5")) as f:
assert f["DS1"][0] == b"Parting"
def test_vlen_nullterm():
with File(get_data_file_path("vlen_string_dset_utc.h5")) as f:
assert f["ds1"][0] == b"2009-12-20T10:16:18.662409Z"
def test_allow_unknown_filter(writable_file):
# apparently 256-511 are reserved for testing purposes
fake_filter_id = 256
ds = writable_file.create_dataset(
'data', shape=(10, 10), dtype=np.uint8, compression=fake_filter_id,
allow_unknown_filter=True
)
assert str(fake_filter_id) in ds._filters
def test_dset_chunk_cache():
"""Chunk cache configuration for individual datasets."""
from io import BytesIO
buf = BytesIO()
with h5py.File(buf, 'w') as fout:
ds = fout.create_dataset(
'x', shape=(10, 20), chunks=(5, 4), dtype='i4',
rdcc_nbytes=2 * 1024 * 1024, rdcc_w0=0.2, rdcc_nslots=997)
ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache()
assert fout.id.get_access_plist().get_cache()[1:] != ds_chunk_cache
assert ds_chunk_cache == (997, 2 * 1024 * 1024, 0.2)
buf.seek(0)
with h5py.File(buf, 'r') as fin:
ds = fin.require_dataset(
'x', shape=(10, 20), dtype='i4',
rdcc_nbytes=3 * 1024 * 1024, rdcc_w0=0.67, rdcc_nslots=709)
ds_chunk_cache = ds.id.get_access_plist().get_chunk_cache()
assert fin.id.get_access_plist().get_cache()[1:] != ds_chunk_cache
assert ds_chunk_cache == (709, 3 * 1024 * 1024, 0.67)
class TestCommutative(BaseDataset):
"""
Test the symmetry of operators, at least with the numpy types.
Issue: https://github.com/h5py/h5py/issues/1947
"""
def test_numpy_commutative(self,):
"""
Create a h5py dataset, extract one element convert to numpy
Check that it returns symmetric response to == and !=
"""
shape = (100,1)
dset = self.f.create_dataset("test", shape, dtype=float,
data=np.random.rand(*shape))
# grab a value from the elements, ie dset[0, 0]
# check that mask arrays are commutative wrt ==, !=
val = np.float64(dset[0, 0])
assert np.all((val == dset) == (dset == val))
assert np.all((val != dset) == (dset != val))
# generate sample not in the dset, ie max(dset)+delta
# check that mask arrays are commutative wrt ==, !=
delta = 0.001
nval = np.nanmax(dset)+delta
assert np.all((nval == dset) == (dset == nval))
assert np.all((nval != dset) == (dset != nval))
def test_basetype_commutative(self,):
"""
Create a h5py dataset and check basetype compatibility.
Check that operation is symmetric, even if it is potentially
not meaningful.
"""
shape = (100,1)
dset = self.f.create_dataset("test", shape, dtype=float,
data=np.random.rand(*shape))
# generate float type, sample float(0.)
# check that operation is symmetric (but potentially meaningless)
val = float(0.)
assert (val == dset) == (dset == val)
assert (val != dset) == (dset != val)
class TestVirtualPrefix(BaseDataset):
"""
Test setting virtual prefix
"""
def test_virtual_prefix_create(self):
shape = (100,1)
virtual_prefix = "/path/to/virtual"
dset = self.f.create_dataset("test", shape, dtype=float,
data=np.random.rand(*shape),
virtual_prefix = virtual_prefix)
virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix()
assert virtual_prefix_readback == virtual_prefix
def test_virtual_prefix_require(self):
virtual_prefix = "/path/to/virtual"
dset = self.f.require_dataset('foo', (10, 3), 'f', virtual_prefix = virtual_prefix)
virtual_prefix_readback = pathlib.Path(dset.id.get_access_plist().get_virtual_prefix().decode()).as_posix()
self.assertEqual(virtual_prefix, virtual_prefix_readback)
self.assertIsInstance(dset, Dataset)
self.assertEqual(dset.shape, (10, 3))
|