Spaces:
Running
Running
File size: 19,339 Bytes
122d3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 |
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License: Standard 3-clause BSD; see "license.txt" for full license terms
# and contributor agreement.
"""
Tests the h5py.Dataset.__getitem__ method.
This module does not specifically test type conversion. The "type" axis
therefore only tests objects which interact with the slicing system in
unreliable ways; for example, compound and array types.
See test_dataset_getitem_types for type-conversion tests.
Tests are organized into TestCases by dataset shape and type. Test
methods vary by slicing arg type.
1. Dataset shape:
Empty
Scalar
1D
3D
2. Type:
Float
Compound
Array
3. Slicing arg types:
Ellipsis
Empty tuple
Regular slice
MultiBlockSlice
Indexing
Index list
Boolean mask
Field names
"""
import sys
import numpy as np
import h5py
from .common import ut, TestCase
class TestEmpty(TestCase):
def setUp(self):
TestCase.setUp(self)
sid = h5py.h5s.create(h5py.h5s.NULL)
tid = h5py.h5t.C_S1.copy()
tid.set_size(10)
dsid = h5py.h5d.create(self.f.id, b'x', tid, sid)
self.dset = h5py.Dataset(dsid)
self.empty_obj = h5py.Empty(np.dtype("S10"))
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 0)
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, None)
def test_size(self):
""" Verify shape """
self.assertEqual(self.dset.size, None)
def test_nbytes(self):
""" Verify nbytes """
self.assertEqual(self.dset.nbytes, 0)
def test_ellipsis(self):
self.assertEqual(self.dset[...], self.empty_obj)
def test_tuple(self):
self.assertEqual(self.dset[()], self.empty_obj)
def test_slice(self):
""" slice -> ValueError """
with self.assertRaises(ValueError):
self.dset[0:4]
def test_multi_block_slice(self):
""" MultiBlockSlice -> ValueError """
with self.assertRaises(ValueError):
self.dset[h5py.MultiBlockSlice()]
def test_index(self):
""" index -> ValueError """
with self.assertRaises(ValueError):
self.dset[0]
def test_indexlist(self):
""" index list -> ValueError """
with self.assertRaises(ValueError):
self.dset[[1,2,5]]
def test_mask(self):
""" mask -> ValueError """
mask = np.array(True, dtype='bool')
with self.assertRaises(ValueError):
self.dset[mask]
def test_fieldnames(self):
""" field name -> ValueError """
with self.assertRaises(ValueError):
self.dset['field']
class TestScalarFloat(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.array(42.5, dtype=np.double)
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 0)
def test_size(self):
""" Verify size """
self.assertEqual(self.dset.size, 1)
def test_nbytes(self):
""" Verify nbytes """
self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, tuple())
def test_ellipsis(self):
""" Ellipsis -> scalar ndarray """
out = self.dset[...]
self.assertArrayEqual(out, self.data)
def test_tuple(self):
""" () -> bare item """
out = self.dset[()]
self.assertArrayEqual(out, self.data.item())
def test_slice(self):
""" slice -> ValueError """
with self.assertRaises(ValueError):
self.dset[0:4]
def test_multi_block_slice(self):
""" MultiBlockSlice -> ValueError """
with self.assertRaises(ValueError):
self.dset[h5py.MultiBlockSlice()]
def test_index(self):
""" index -> ValueError """
with self.assertRaises(ValueError):
self.dset[0]
# FIXME: NumPy has IndexError instead
def test_indexlist(self):
""" index list -> ValueError """
with self.assertRaises(ValueError):
self.dset[[1,2,5]]
# FIXME: NumPy permits this
def test_mask(self):
""" mask -> ValueError """
mask = np.array(True, dtype='bool')
with self.assertRaises(ValueError):
self.dset[mask]
def test_fieldnames(self):
""" field name -> ValueError (no fields) """
with self.assertRaises(ValueError):
self.dset['field']
class TestScalarCompound(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.array((42.5, -118, "Hello"), dtype=[('a', 'f'), ('b', 'i'), ('c', '|S10')])
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 0)
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, tuple())
def test_size(self):
""" Verify size """
self.assertEqual(self.dset.size, 1)
def test_nbytes(self):
""" Verify nbytes """
self.assertEqual(self.dset.nbytes, self.data.dtype.itemsize)
def test_ellipsis(self):
""" Ellipsis -> scalar ndarray """
out = self.dset[...]
# assertArrayEqual doesn't work with compounds; do manually
self.assertIsInstance(out, np.ndarray)
self.assertEqual(out.shape, self.data.shape)
self.assertEqual(out.dtype, self.data.dtype)
def test_tuple(self):
""" () -> np.void instance """
out = self.dset[()]
self.assertIsInstance(out, np.void)
self.assertEqual(out.dtype, self.data.dtype)
def test_slice(self):
""" slice -> ValueError """
with self.assertRaises(ValueError):
self.dset[0:4]
def test_multi_block_slice(self):
""" MultiBlockSlice -> ValueError """
with self.assertRaises(ValueError):
self.dset[h5py.MultiBlockSlice()]
def test_index(self):
""" index -> ValueError """
with self.assertRaises(ValueError):
self.dset[0]
# FIXME: NumPy has IndexError instead
def test_indexlist(self):
""" index list -> ValueError """
with self.assertRaises(ValueError):
self.dset[[1,2,5]]
# FIXME: NumPy permits this
def test_mask(self):
""" mask -> ValueError """
mask = np.array(True, dtype='bool')
with self.assertRaises(ValueError):
self.dset[mask]
# FIXME: NumPy returns a scalar ndarray
def test_fieldnames(self):
""" field name -> bare value """
out = self.dset['a']
self.assertIsInstance(out, np.float32)
self.assertEqual(out, self.dset['a'])
class TestScalarArray(TestCase):
def setUp(self):
TestCase.setUp(self)
self.dt = np.dtype('(3,2)f')
self.data = np.array([(3.2, -119), (42, 99.8), (3.14, 0)], dtype='f')
self.dset = self.f.create_dataset('x', (), dtype=self.dt)
self.dset[...] = self.data
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.data.ndim, 2)
self.assertEqual(self.dset.ndim, 0)
def test_size(self):
""" Verify size """
self.assertEqual(self.dset.size, 1)
def test_nbytes(self):
""" Verify nbytes """
self.assertEqual(self.dset.nbytes, self.dset.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self):
""" Verify shape """
self.assertEqual(self.data.shape, (3, 2))
self.assertEqual(self.dset.shape, tuple())
def test_ellipsis(self):
""" Ellipsis -> ndarray promoted to underlying shape """
out = self.dset[...]
self.assertArrayEqual(out, self.data)
def test_tuple(self):
""" () -> same as ellipsis """
out = self.dset[...]
self.assertArrayEqual(out, self.data)
def test_slice(self):
""" slice -> ValueError """
with self.assertRaises(ValueError):
self.dset[0:4]
def test_multi_block_slice(self):
""" MultiBlockSlice -> ValueError """
with self.assertRaises(ValueError):
self.dset[h5py.MultiBlockSlice()]
def test_index(self):
""" index -> ValueError """
with self.assertRaises(ValueError):
self.dset[0]
def test_indexlist(self):
""" index list -> ValueError """
with self.assertRaises(ValueError):
self.dset[[]]
def test_mask(self):
""" mask -> ValueError """
mask = np.array(True, dtype='bool')
with self.assertRaises(ValueError):
self.dset[mask]
def test_fieldnames(self):
""" field name -> ValueError (no fields) """
with self.assertRaises(ValueError):
self.dset['field']
class Test1DZeroFloat(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.ones((0,), dtype='f')
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 1)
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, (0,))
def test_ellipsis(self):
""" Ellipsis -> ndarray of matching shape """
self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
def test_tuple(self):
""" () -> same as ellipsis """
self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
def test_slice(self):
""" slice -> ndarray of shape (0,) """
self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
def test_slice_stop_less_than_start(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
def test_index(self):
""" index -> out of range """
with self.assertRaises(IndexError):
self.dset[0]
def test_indexlist(self):
""" index list """
self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
def test_mask(self):
""" mask -> ndarray of matching shape """
mask = np.ones((0,), dtype='bool')
self.assertNumpyBehavior(
self.dset,
self.data,
np.s_[mask],
# Fast reader doesn't work with boolean masks
skip_fast_reader=True,
)
def test_fieldnames(self):
""" field name -> ValueError (no fields) """
with self.assertRaises(ValueError):
self.dset['field']
class Test1DFloat(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.arange(13).astype('f')
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 1)
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, (13,))
def test_ellipsis(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[...])
def test_tuple(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[()])
def test_slice_simple(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[0:4])
def test_slice_zerosize(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[4:4])
def test_slice_strides(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[1:7:3])
def test_slice_negindexes(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[-8:-2:3])
def test_slice_stop_less_than_start(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[7:5])
def test_slice_outofrange(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[100:400:3])
def test_slice_backwards(self):
""" we disallow negative steps """
with self.assertRaises(ValueError):
self.dset[::-1]
def test_slice_zerostride(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[::0])
def test_index_simple(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[3])
def test_index_neg(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[-4])
# FIXME: NumPy permits this... it adds a new axis in front
def test_index_none(self):
with self.assertRaises(TypeError):
self.dset[None]
def test_index_illegal(self):
""" Illegal slicing argument """
with self.assertRaises(TypeError):
self.dset[{}]
def test_index_outofrange(self):
with self.assertRaises(IndexError):
self.dset[100]
def test_indexlist_simple(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[[1,2,5]])
def test_indexlist_numpyarray(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5])])
def test_indexlist_single_index_ellipsis(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[[0], ...])
def test_indexlist_numpyarray_single_index_ellipsis(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([0]), ...])
def test_indexlist_numpyarray_ellipsis(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[np.array([1, 2, 5]), ...])
def test_indexlist_empty(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
def test_indexlist_outofrange(self):
with self.assertRaises(IndexError):
self.dset[[100]]
def test_indexlist_nonmonotonic(self):
""" we require index list values to be strictly increasing """
with self.assertRaises(TypeError):
self.dset[[1,3,2]]
def test_indexlist_monotonic_negative(self):
# This should work: indices are logically increasing
self.assertNumpyBehavior(self.dset, self.data, np.s_[[0, 2, -2]])
with self.assertRaises(TypeError):
self.dset[[-2, -3]]
def test_indexlist_repeated(self):
""" we forbid repeated index values """
with self.assertRaises(TypeError):
self.dset[[1,1,2]]
def test_mask_true(self):
self.assertNumpyBehavior(
self.dset,
self.data,
np.s_[self.data > -100],
# Fast reader doesn't work with boolean masks
skip_fast_reader=True,
)
def test_mask_false(self):
self.assertNumpyBehavior(
self.dset,
self.data,
np.s_[self.data > 100],
# Fast reader doesn't work with boolean masks
skip_fast_reader=True,
)
def test_mask_partial(self):
self.assertNumpyBehavior(
self.dset,
self.data,
np.s_[self.data > 5],
# Fast reader doesn't work with boolean masks
skip_fast_reader=True,
)
def test_mask_wrongsize(self):
""" we require the boolean mask shape to match exactly """
with self.assertRaises(TypeError):
self.dset[np.ones((2,), dtype='bool')]
def test_fieldnames(self):
""" field name -> ValueError (no fields) """
with self.assertRaises(ValueError):
self.dset['field']
class Test2DZeroFloat(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.ones((0,3), dtype='f')
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 2)
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, (0, 3))
def test_indexlist(self):
""" see issue #473 """
self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])
class Test2DFloat(TestCase):
def setUp(self):
TestCase.setUp(self)
self.data = np.ones((5,3), dtype='f')
self.dset = self.f.create_dataset('x', data=self.data)
def test_ndim(self):
""" Verify number of dimensions """
self.assertEqual(self.dset.ndim, 2)
def test_size(self):
""" Verify size """
self.assertEqual(self.dset.size, 15)
def test_nbytes(self):
""" Verify nbytes """
self.assertEqual(self.dset.nbytes, 15*self.data.dtype.itemsize) # not sure if 'f' is always alias for 'f4'
def test_shape(self):
""" Verify shape """
self.assertEqual(self.dset.shape, (5, 3))
def test_indexlist(self):
""" see issue #473 """
self.assertNumpyBehavior(self.dset, self.data, np.s_[:,[0,1,2]])
def test_index_emptylist(self):
self.assertNumpyBehavior(self.dset, self.data, np.s_[:, []])
self.assertNumpyBehavior(self.dset, self.data, np.s_[[]])
class TestVeryLargeArray(TestCase):
def setUp(self):
TestCase.setUp(self)
self.dset = self.f.create_dataset('x', shape=(2**15, 2**16))
@ut.skipIf(sys.maxsize < 2**31, 'Maximum integer size >= 2**31 required')
def test_size(self):
self.assertEqual(self.dset.size, 2**31)
def test_read_no_fill_value(writable_file):
# With FILL_TIME_NEVER, HDF5 doesn't write zeros in the output array for
# unallocated chunks. If we read into uninitialized memory, it can appear
# to read random values. https://github.com/h5py/h5py/issues/2069
dcpl = h5py.h5p.create(h5py.h5p.DATASET_CREATE)
dcpl.set_chunk((1,))
dcpl.set_fill_time(h5py.h5d.FILL_TIME_NEVER)
ds = h5py.Dataset(h5py.h5d.create(
writable_file.id, b'a', h5py.h5t.IEEE_F64LE, h5py.h5s.create_simple((5,)), dcpl
))
np.testing.assert_array_equal(ds[:3], np.zeros(3, np.float64))
class TestBoolIndex(TestCase):
"""
Tests for indexing with Boolean arrays
"""
def setUp(self):
super().setUp()
self.arr = np.arange(9).reshape(3,-1)
self.dset = self.f.create_dataset('x', data=self.arr)
def test_select_first_axis(self):
sel = np.s_[[False, True, False],:]
self.assertNumpyBehavior(self.dset, self.arr, sel)
def test_wrong_size(self):
sel = np.s_[[False, True, False, False],:]
with self.assertRaises(TypeError):
self.dset[sel]
|