File size: 14,290 Bytes
122d3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License:  Standard 3-clause BSD; see "license.txt" for full license terms
#           and contributor agreement.

"""

    Dataset slicing test module.



    Tests all supported slicing operations, including read/write and

    broadcasting operations.  Does not test type conversion except for

    corner cases overlapping with slicing; for example, when selecting

    specific fields of a compound type.

"""

import numpy as np

from .common import ut, TestCase

import h5py
from h5py import h5s, h5t, h5d
from h5py import File, MultiBlockSlice

class BaseSlicing(TestCase):

    def setUp(self):
        self.f = File(self.mktemp(), 'w')

    def tearDown(self):
        if self.f:
            self.f.close()

class TestSingleElement(BaseSlicing):

    """

        Feature: Retrieving a single element works with NumPy semantics

    """

    def test_single_index(self):
        """ Single-element selection with [index] yields array scalar """
        dset = self.f.create_dataset('x', (1,), dtype='i1')
        out = dset[0]
        self.assertIsInstance(out, np.int8)

    def test_single_null(self):
        """ Single-element selection with [()] yields ndarray """
        dset = self.f.create_dataset('x', (1,), dtype='i1')
        out = dset[()]
        self.assertIsInstance(out, np.ndarray)
        self.assertEqual(out.shape, (1,))

    def test_scalar_index(self):
        """ Slicing with [...] yields scalar ndarray """
        dset = self.f.create_dataset('x', shape=(), dtype='f')
        out = dset[...]
        self.assertIsInstance(out, np.ndarray)
        self.assertEqual(out.shape, ())

    def test_scalar_null(self):
        """ Slicing with [()] yields array scalar """
        dset = self.f.create_dataset('x', shape=(), dtype='i1')
        out = dset[()]
        self.assertIsInstance(out, np.int8)

    def test_compound(self):
        """ Compound scalar is numpy.void, not tuple (issue 135) """
        dt = np.dtype([('a','i4'),('b','f8')])
        v = np.ones((4,), dtype=dt)
        dset = self.f.create_dataset('foo', (4,), data=v)
        self.assertEqual(dset[0], v[0])
        self.assertIsInstance(dset[0], np.void)

class TestObjectIndex(BaseSlicing):

    """

        Feature: numpy.object_ subtypes map to real Python objects

    """

    def test_reference(self):
        """ Indexing a reference dataset returns a h5py.Reference instance """
        dset = self.f.create_dataset('x', (1,), dtype=h5py.ref_dtype)
        dset[0] = self.f.ref
        self.assertEqual(type(dset[0]), h5py.Reference)

    def test_regref(self):
        """ Indexing a region reference dataset returns a h5py.RegionReference

        """
        dset1 = self.f.create_dataset('x', (10,10))
        regref = dset1.regionref[...]
        dset2 = self.f.create_dataset('y', (1,), dtype=h5py.regionref_dtype)
        dset2[0] = regref
        self.assertEqual(type(dset2[0]), h5py.RegionReference)

    def test_reference_field(self):
        """ Compound types of which a reference is an element work right """
        dt = np.dtype([('a', 'i'),('b', h5py.ref_dtype)])

        dset = self.f.create_dataset('x', (1,), dtype=dt)
        dset[0] = (42, self.f['/'].ref)

        out = dset[0]
        self.assertEqual(type(out[1]), h5py.Reference)  # isinstance does NOT work

    def test_scalar(self):
        """ Indexing returns a real Python object on scalar datasets """
        dset = self.f.create_dataset('x', (), dtype=h5py.ref_dtype)
        dset[()] = self.f.ref
        self.assertEqual(type(dset[()]), h5py.Reference)

    def test_bytestr(self):
        """ Indexing a byte string dataset returns a real python byte string

        """
        dset = self.f.create_dataset('x', (1,), dtype=h5py.string_dtype(encoding='ascii'))
        dset[0] = b"Hello there!"
        self.assertEqual(type(dset[0]), bytes)

class TestSimpleSlicing(TestCase):

    """

        Feature: Simple NumPy-style slices (start:stop:step) are supported.

    """

    def setUp(self):
        self.f = File(self.mktemp(), 'w')
        self.arr = np.arange(10)
        self.dset = self.f.create_dataset('x', data=self.arr)

    def tearDown(self):
        if self.f:
            self.f.close()

    def test_negative_stop(self):
        """ Negative stop indexes work as they do in NumPy """
        self.assertArrayEqual(self.dset[2:-2], self.arr[2:-2])

    def test_write(self):
        """Assigning to a 1D slice of a 2D dataset

        """
        dset = self.f.create_dataset('x2', (10, 2))

        x = np.zeros((10, 1))
        dset[:, 0] = x[:, 0]
        with self.assertRaises(TypeError):
            dset[:, 1] = x

class TestArraySlicing(BaseSlicing):

    """

        Feature: Array types are handled appropriately

    """

    def test_read(self):
        """ Read arrays tack array dimensions onto end of shape tuple """
        dt = np.dtype('(3,)f8')
        dset = self.f.create_dataset('x',(10,),dtype=dt)
        self.assertEqual(dset.shape, (10,))
        self.assertEqual(dset.dtype, dt)

        # Full read
        out = dset[...]
        self.assertEqual(out.dtype, np.dtype('f8'))
        self.assertEqual(out.shape, (10,3))

        # Single element
        out = dset[0]
        self.assertEqual(out.dtype, np.dtype('f8'))
        self.assertEqual(out.shape, (3,))

        # Range
        out = dset[2:8:2]
        self.assertEqual(out.dtype, np.dtype('f8'))
        self.assertEqual(out.shape, (3,3))

    def test_write_broadcast(self):
        """ Array fill from constant is not supported (issue 211).

        """
        dt = np.dtype('(3,)i')

        dset = self.f.create_dataset('x', (10,), dtype=dt)

        with self.assertRaises(TypeError):
            dset[...] = 42

    def test_write_element(self):
        """ Write a single element to the array



        Issue 211.

        """
        dt = np.dtype('(3,)f8')
        dset = self.f.create_dataset('x', (10,), dtype=dt)

        data = np.array([1,2,3.0])
        dset[4] = data

        out = dset[4]
        self.assertTrue(np.all(out == data))

    def test_write_slices(self):
        """ Write slices to array type """
        dt = np.dtype('(3,)i')

        data1 = np.ones((2,), dtype=dt)
        data2 = np.ones((4,5), dtype=dt)

        dset = self.f.create_dataset('x', (10,9,11), dtype=dt)

        dset[0,0,2:4] = data1
        self.assertArrayEqual(dset[0,0,2:4], data1)

        dset[3, 1:5, 6:11] = data2
        self.assertArrayEqual(dset[3, 1:5, 6:11], data2)


    def test_roundtrip(self):
        """ Read the contents of an array and write them back



        Issue 211.

        """
        dt = np.dtype('(3,)f8')
        dset = self.f.create_dataset('x', (10,), dtype=dt)

        out = dset[...]
        dset[...] = out

        self.assertTrue(np.all(dset[...] == out))


class TestZeroLengthSlicing(BaseSlicing):

    """

        Slices resulting in empty arrays

    """

    def test_slice_zero_length_dimension(self):
        """ Slice a dataset with a zero in its shape vector

            along the zero-length dimension """
        for i, shape in enumerate([(0,), (0, 3), (0, 2, 1)]):
            dset = self.f.create_dataset('x%d'%i, shape, dtype=int, maxshape=(None,)*len(shape))
            self.assertEqual(dset.shape, shape)
            out = dset[...]
            self.assertIsInstance(out, np.ndarray)
            self.assertEqual(out.shape, shape)
            out = dset[:]
            self.assertIsInstance(out, np.ndarray)
            self.assertEqual(out.shape, shape)
            if len(shape) > 1:
                out = dset[:, :1]
                self.assertIsInstance(out, np.ndarray)
                self.assertEqual(out.shape[:2], (0, 1))

    def test_slice_other_dimension(self):
        """ Slice a dataset with a zero in its shape vector

            along a non-zero-length dimension """
        for i, shape in enumerate([(3, 0), (1, 2, 0), (2, 0, 1)]):
            dset = self.f.create_dataset('x%d'%i, shape, dtype=int, maxshape=(None,)*len(shape))
            self.assertEqual(dset.shape, shape)
            out = dset[:1]
            self.assertIsInstance(out, np.ndarray)
            self.assertEqual(out.shape, (1,)+shape[1:])

    def test_slice_of_length_zero(self):
        """ Get a slice of length zero from a non-empty dataset """
        for i, shape in enumerate([(3,), (2, 2,), (2,  1, 5)]):
            dset = self.f.create_dataset('x%d'%i, data=np.zeros(shape, int), maxshape=(None,)*len(shape))
            self.assertEqual(dset.shape, shape)
            out = dset[1:1]
            self.assertIsInstance(out, np.ndarray)
            self.assertEqual(out.shape, (0,)+shape[1:])

class TestFieldNames(BaseSlicing):

    """

        Field names for read & write

    """

    dt = np.dtype([('a', 'f'), ('b', 'i'), ('c', 'f4')])
    data = np.ones((100,), dtype=dt)

    def setUp(self):
        BaseSlicing.setUp(self)
        self.dset = self.f.create_dataset('x', (100,), dtype=self.dt)
        self.dset[...] = self.data

    def test_read(self):
        """ Test read with field selections """
        self.assertArrayEqual(self.dset['a'], self.data['a'])

    def test_unicode_names(self):
        """ Unicode field names for for read and write """
        self.assertArrayEqual(self.dset['a'], self.data['a'])
        self.dset['a'] = 42
        data = self.data.copy()
        data['a'] = 42
        self.assertArrayEqual(self.dset['a'], data['a'])

    def test_write(self):
        """ Test write with field selections """
        data2 = self.data.copy()
        data2['a'] *= 2
        self.dset['a'] = data2
        self.assertTrue(np.all(self.dset[...] == data2))
        data2['b'] *= 4
        self.dset['b'] = data2
        self.assertTrue(np.all(self.dset[...] == data2))
        data2['a'] *= 3
        data2['c'] *= 3
        self.dset['a','c'] = data2
        self.assertTrue(np.all(self.dset[...] == data2))

    def test_write_noncompound(self):
        """ Test write with non-compound source (single-field) """
        data2 = self.data.copy()
        data2['b'] = 1.0
        self.dset['b'] = 1.0
        self.assertTrue(np.all(self.dset[...] == data2))


class TestMultiBlockSlice(BaseSlicing):

    def setUp(self):
        super().setUp()
        self.arr = np.arange(10)
        self.dset = self.f.create_dataset('x', data=self.arr)

    def test_default(self):
        # Default selects entire dataset as one block
        mbslice = MultiBlockSlice()

        self.assertEqual(mbslice.indices(10), (0, 1, 10, 1))
        np.testing.assert_array_equal(self.dset[mbslice], self.arr)

    def test_default_explicit(self):
        mbslice = MultiBlockSlice(start=0, count=10, stride=1, block=1)

        self.assertEqual(mbslice.indices(10), (0, 1, 10, 1))
        np.testing.assert_array_equal(self.dset[mbslice], self.arr)

    def test_start(self):
        mbslice = MultiBlockSlice(start=4)

        self.assertEqual(mbslice.indices(10), (4, 1, 6, 1))
        np.testing.assert_array_equal(self.dset[mbslice], np.array([4, 5, 6, 7, 8, 9]))

    def test_count(self):
        mbslice = MultiBlockSlice(count=7)

        self.assertEqual(mbslice.indices(10), (0, 1, 7, 1))
        np.testing.assert_array_equal(
            self.dset[mbslice], np.array([0, 1, 2, 3, 4, 5, 6])
        )

    def test_count_more_than_length_error(self):
        mbslice = MultiBlockSlice(count=11)
        with self.assertRaises(ValueError):
            mbslice.indices(10)

    def test_stride(self):
        mbslice = MultiBlockSlice(stride=2)

        self.assertEqual(mbslice.indices(10), (0, 2, 5, 1))
        np.testing.assert_array_equal(self.dset[mbslice], np.array([0, 2, 4, 6, 8]))

    def test_stride_zero_error(self):
        with self.assertRaises(ValueError):
            # This would cause a ZeroDivisionError if not caught
            MultiBlockSlice(stride=0, block=0).indices(10)

    def test_stride_block_equal(self):
        mbslice = MultiBlockSlice(stride=2, block=2)

        self.assertEqual(mbslice.indices(10), (0, 2, 5, 2))
        np.testing.assert_array_equal(self.dset[mbslice], self.arr)

    def test_block_more_than_stride_error(self):
        with self.assertRaises(ValueError):
            MultiBlockSlice(block=3)

        with self.assertRaises(ValueError):
            MultiBlockSlice(stride=2, block=3)

    def test_stride_more_than_block(self):
        mbslice = MultiBlockSlice(stride=3, block=2)

        self.assertEqual(mbslice.indices(10), (0, 3, 3, 2))
        np.testing.assert_array_equal(self.dset[mbslice], np.array([0, 1, 3, 4, 6, 7]))

    def test_block_overruns_extent_error(self):
        # If fully described then must fit within extent
        mbslice = MultiBlockSlice(start=2, count=2, stride=5, block=4)
        with self.assertRaises(ValueError):
            mbslice.indices(10)

    def test_fully_described(self):
        mbslice = MultiBlockSlice(start=1, count=2, stride=5, block=4)

        self.assertEqual(mbslice.indices(10), (1, 5, 2, 4))
        np.testing.assert_array_equal(
            self.dset[mbslice], np.array([1, 2, 3, 4, 6, 7, 8, 9])
        )

    def test_count_calculated(self):
        # If not given, count should be calculated to select as many full blocks as possible
        mbslice = MultiBlockSlice(start=1, stride=3, block=2)

        self.assertEqual(mbslice.indices(10), (1, 3, 3, 2))
        np.testing.assert_array_equal(self.dset[mbslice], np.array([1, 2, 4, 5, 7, 8]))

    def test_zero_count_calculated_error(self):
        # In this case, there is no possible count to select even one block, so error
        mbslice = MultiBlockSlice(start=8, stride=4, block=3)

        with self.assertRaises(ValueError):
            mbslice.indices(10)