File size: 7,643 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from mlagents.torch_utils import torch
import abc
from typing import Tuple
from enum import Enum
from mlagents.trainers.torch_entities.model_serialization import exporting_to_onnx


class Swish(torch.nn.Module):
    def forward(self, data: torch.Tensor) -> torch.Tensor:
        return torch.mul(data, torch.sigmoid(data))


class Initialization(Enum):
    Zero = 0
    XavierGlorotNormal = 1
    XavierGlorotUniform = 2
    KaimingHeNormal = 3  # also known as Variance scaling
    KaimingHeUniform = 4
    Normal = 5


_init_methods = {
    Initialization.Zero: torch.zero_,
    Initialization.XavierGlorotNormal: torch.nn.init.xavier_normal_,
    Initialization.XavierGlorotUniform: torch.nn.init.xavier_uniform_,
    Initialization.KaimingHeNormal: torch.nn.init.kaiming_normal_,
    Initialization.KaimingHeUniform: torch.nn.init.kaiming_uniform_,
    Initialization.Normal: torch.nn.init.normal_,
}


def linear_layer(
    input_size: int,
    output_size: int,
    kernel_init: Initialization = Initialization.XavierGlorotUniform,
    kernel_gain: float = 1.0,
    bias_init: Initialization = Initialization.Zero,
) -> torch.nn.Module:
    """
    Creates a torch.nn.Linear module and initializes its weights.
    :param input_size: The size of the input tensor
    :param output_size: The size of the output tensor
    :param kernel_init: The Initialization to use for the weights of the layer
    :param kernel_gain: The multiplier for the weights of the kernel. Note that in
    TensorFlow, the gain is square-rooted. Therefore calling  with scale 0.01 is equivalent to calling
        KaimingHeNormal with kernel_gain of 0.1
    :param bias_init: The Initialization to use for the weights of the bias layer
    """
    layer = torch.nn.Linear(input_size, output_size)
    if (
        kernel_init == Initialization.KaimingHeNormal
        or kernel_init == Initialization.KaimingHeUniform
    ):
        _init_methods[kernel_init](layer.weight.data, nonlinearity="linear")
    else:
        _init_methods[kernel_init](layer.weight.data)
    layer.weight.data *= kernel_gain
    _init_methods[bias_init](layer.bias.data)
    return layer


def lstm_layer(
    input_size: int,
    hidden_size: int,
    num_layers: int = 1,
    batch_first: bool = True,
    forget_bias: float = 1.0,
    kernel_init: Initialization = Initialization.XavierGlorotUniform,
    bias_init: Initialization = Initialization.Zero,
) -> torch.nn.Module:
    """
    Creates a torch.nn.LSTM and initializes its weights and biases. Provides a
    forget_bias offset like is done in TensorFlow.
    """
    lstm = torch.nn.LSTM(input_size, hidden_size, num_layers, batch_first=batch_first)
    # Add forget_bias to forget gate bias
    for name, param in lstm.named_parameters():
        # Each weight and bias is a concatenation of 4 matrices
        if "weight" in name:
            for idx in range(4):
                block_size = param.shape[0] // 4
                _init_methods[kernel_init](
                    param.data[idx * block_size : (idx + 1) * block_size]
                )
        if "bias" in name:
            for idx in range(4):
                block_size = param.shape[0] // 4
                _init_methods[bias_init](
                    param.data[idx * block_size : (idx + 1) * block_size]
                )
                if idx == 1:
                    param.data[idx * block_size : (idx + 1) * block_size].add_(
                        forget_bias
                    )
    return lstm


class MemoryModule(torch.nn.Module):
    @abc.abstractproperty
    def memory_size(self) -> int:
        """
        Size of memory that is required at the start of a sequence.
        """
        pass

    @abc.abstractmethod
    def forward(
        self, input_tensor: torch.Tensor, memories: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Pass a sequence to the memory module.
        :input_tensor: Tensor of shape (batch_size, seq_length, size) that represents the input.
        :memories: Tensor of initial memories.
        :return: Tuple of output, final memories.
        """
        pass


class LayerNorm(torch.nn.Module):
    """
    A vanilla implementation of layer normalization  https://arxiv.org/pdf/1607.06450.pdf
    norm_x = (x - mean) / sqrt((x - mean) ^ 2)
    This does not include the trainable parameters gamma and beta for performance speed.
    Typically, this is norm_x * gamma + beta
    """

    def forward(self, layer_activations: torch.Tensor) -> torch.Tensor:
        mean = torch.mean(layer_activations, dim=-1, keepdim=True)
        var = torch.mean((layer_activations - mean) ** 2, dim=-1, keepdim=True)
        return (layer_activations - mean) / (torch.sqrt(var + 1e-5))


class LinearEncoder(torch.nn.Module):
    """
    Linear layers.
    """

    def __init__(
        self,
        input_size: int,
        num_layers: int,
        hidden_size: int,
        kernel_init: Initialization = Initialization.KaimingHeNormal,
        kernel_gain: float = 1.0,
    ):
        super().__init__()
        self.layers = [
            linear_layer(
                input_size,
                hidden_size,
                kernel_init=kernel_init,
                kernel_gain=kernel_gain,
            )
        ]
        self.layers.append(Swish())
        for _ in range(num_layers - 1):
            self.layers.append(
                linear_layer(
                    hidden_size,
                    hidden_size,
                    kernel_init=kernel_init,
                    kernel_gain=kernel_gain,
                )
            )
            self.layers.append(Swish())
        self.seq_layers = torch.nn.Sequential(*self.layers)

    def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
        return self.seq_layers(input_tensor)


class LSTM(MemoryModule):
    """
    Memory module that implements LSTM.
    """

    def __init__(
        self,
        input_size: int,
        memory_size: int,
        num_layers: int = 1,
        forget_bias: float = 1.0,
        kernel_init: Initialization = Initialization.XavierGlorotUniform,
        bias_init: Initialization = Initialization.Zero,
    ):
        super().__init__()
        # We set hidden size to half of memory_size since the initial memory
        # will be divided between the hidden state and initial cell state.
        self.hidden_size = memory_size // 2
        self.lstm = lstm_layer(
            input_size,
            self.hidden_size,
            num_layers,
            True,
            forget_bias,
            kernel_init,
            bias_init,
        )

    @property
    def memory_size(self) -> int:
        return 2 * self.hidden_size

    def forward(
        self, input_tensor: torch.Tensor, memories: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:

        if exporting_to_onnx.is_exporting():
            # This transpose is needed both at input and output of the LSTM when
            # exporting because ONNX will expect (sequence_len, batch, memory_size)
            # instead of (batch, sequence_len, memory_size)
            memories = torch.transpose(memories, 0, 1)

        # We don't use torch.split here since it is not supported by Barracuda
        h0 = memories[:, :, : self.hidden_size].contiguous()
        c0 = memories[:, :, self.hidden_size :].contiguous()

        hidden = (h0, c0)
        lstm_out, hidden_out = self.lstm(input_tensor, hidden)
        output_mem = torch.cat(hidden_out, dim=-1)

        if exporting_to_onnx.is_exporting():
            output_mem = torch.transpose(output_mem, 0, 1)

        return lstm_out, output_mem