File size: 73,306 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
try:
    from itertools import izip
except ImportError:
    izip = zip

from ..libmp.backend import xrange
from .calculus import defun

try:
    next = next
except NameError:
    next = lambda _: _.next()

@defun
def richardson(ctx, seq):
    r"""
    Given a list ``seq`` of the first `N` elements of a slowly convergent
    infinite sequence, :func:`~mpmath.richardson` computes the `N`-term
    Richardson extrapolate for the limit.

    :func:`~mpmath.richardson` returns `(v, c)` where `v` is the estimated
    limit and `c` is the magnitude of the largest weight used during the
    computation. The weight provides an estimate of the precision
    lost to cancellation. Due to cancellation effects, the sequence must
    be typically be computed at a much higher precision than the target
    accuracy of the extrapolation.

    **Applicability and issues**

    The `N`-step Richardson extrapolation algorithm used by
    :func:`~mpmath.richardson` is described in [1].

    Richardson extrapolation only works for a specific type of sequence,
    namely one converging like partial sums of
    `P(1)/Q(1) + P(2)/Q(2) + \ldots` where `P` and `Q` are polynomials.
    When the sequence does not convergence at such a rate
    :func:`~mpmath.richardson` generally produces garbage.

    Richardson extrapolation has the advantage of being fast: the `N`-term
    extrapolate requires only `O(N)` arithmetic operations, and usually
    produces an estimate that is accurate to `O(N)` digits. Contrast with
    the Shanks transformation (see :func:`~mpmath.shanks`), which requires
    `O(N^2)` operations.

    :func:`~mpmath.richardson` is unable to produce an estimate for the
    approximation error. One way to estimate the error is to perform
    two extrapolations with slightly different `N` and comparing the
    results.

    Richardson extrapolation does not work for oscillating sequences.
    As a simple workaround, :func:`~mpmath.richardson` detects if the last
    three elements do not differ monotonically, and in that case
    applies extrapolation only to the even-index elements.

    **Example**

    Applying Richardson extrapolation to the Leibniz series for `\pi`::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
        ...     for m in range(1,30)]
        >>> v, c = richardson(S[:10])
        >>> v
        3.2126984126984126984126984127
        >>> nprint([v-pi, c])
        [0.0711058, 2.0]

        >>> v, c = richardson(S[:30])
        >>> v
        3.14159265468624052829954206226
        >>> nprint([v-pi, c])
        [1.09645e-9, 20833.3]

    **References**

    1. [BenderOrszag]_ pp. 375-376

    """
    if len(seq) < 3:
        raise ValueError("seq should be of minimum length 3")
    if ctx.sign(seq[-1]-seq[-2]) != ctx.sign(seq[-2]-seq[-3]):
        seq = seq[::2]
    N = len(seq)//2-1
    s = ctx.zero
    # The general weight is c[k] = (N+k)**N * (-1)**(k+N) / k! / (N-k)!
    # To avoid repeated factorials, we simplify the quotient
    # of successive weights to obtain a recurrence relation
    c = (-1)**N * N**N / ctx.mpf(ctx._ifac(N))
    maxc = 1
    for k in xrange(N+1):
        s += c * seq[N+k]
        maxc = max(abs(c), maxc)
        c *= (k-N)*ctx.mpf(k+N+1)**N
        c /= ((1+k)*ctx.mpf(k+N)**N)
    return s, maxc

@defun
def shanks(ctx, seq, table=None, randomized=False):
    r"""
    Given a list ``seq`` of the first `N` elements of a slowly
    convergent infinite sequence `(A_k)`, :func:`~mpmath.shanks` computes the iterated
    Shanks transformation `S(A), S(S(A)), \ldots, S^{N/2}(A)`. The Shanks
    transformation often provides strong convergence acceleration,
    especially if the sequence is oscillating.

    The iterated Shanks transformation is computed using the Wynn
    epsilon algorithm (see [1]). :func:`~mpmath.shanks` returns the full
    epsilon table generated by Wynn's algorithm, which can be read
    off as follows:

    * The table is a list of lists forming a lower triangular matrix,
      where higher row and column indices correspond to more accurate
      values.
    * The columns with even index hold dummy entries (required for the
      computation) and the columns with odd index hold the actual
      extrapolates.
    * The last element in the last row is typically the most
      accurate estimate of the limit.
    * The difference to the third last element in the last row
      provides an estimate of the approximation error.
    * The magnitude of the second last element provides an estimate
      of the numerical accuracy lost to cancellation.

    For convenience, so the extrapolation is stopped at an odd index
    so that ``shanks(seq)[-1][-1]`` always gives an estimate of the
    limit.

    Optionally, an existing table can be passed to :func:`~mpmath.shanks`.
    This can be used to efficiently extend a previous computation after
    new elements have been appended to the sequence. The table will
    then be updated in-place.

    **The Shanks transformation**

    The Shanks transformation is defined as follows (see [2]): given
    the input sequence `(A_0, A_1, \ldots)`, the transformed sequence is
    given by

    .. math ::

        S(A_k) = \frac{A_{k+1}A_{k-1}-A_k^2}{A_{k+1}+A_{k-1}-2 A_k}

    The Shanks transformation gives the exact limit `A_{\infty}` in a
    single step if `A_k = A + a q^k`. Note in particular that it
    extrapolates the exact sum of a geometric series in a single step.

    Applying the Shanks transformation once often improves convergence
    substantially for an arbitrary sequence, but the optimal effect is
    obtained by applying it iteratively:
    `S(S(A_k)), S(S(S(A_k))), \ldots`.

    Wynn's epsilon algorithm provides an efficient way to generate
    the table of iterated Shanks transformations. It reduces the
    computation of each element to essentially a single division, at
    the cost of requiring dummy elements in the table. See [1] for
    details.

    **Precision issues**

    Due to cancellation effects, the sequence must be typically be
    computed at a much higher precision than the target accuracy
    of the extrapolation.

    If the Shanks transformation converges to the exact limit (such
    as if the sequence is a geometric series), then a division by
    zero occurs. By default, :func:`~mpmath.shanks` handles this case by
    terminating the iteration and returning the table it has
    generated so far. With *randomized=True*, it will instead
    replace the zero by a pseudorandom number close to zero.
    (TODO: find a better solution to this problem.)

    **Examples**

    We illustrate by applying Shanks transformation to the Leibniz
    series for `\pi`::

        >>> from mpmath import *
        >>> mp.dps = 50
        >>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
        ...     for m in range(1,30)]
        >>>
        >>> T = shanks(S[:7])
        >>> for row in T:
        ...     nprint(row)
        ...
        [-0.75]
        [1.25, 3.16667]
        [-1.75, 3.13333, -28.75]
        [2.25, 3.14524, 82.25, 3.14234]
        [-2.75, 3.13968, -177.75, 3.14139, -969.937]
        [3.25, 3.14271, 327.25, 3.14166, 3515.06, 3.14161]

    The extrapolated accuracy is about 4 digits, and about 4 digits
    may have been lost due to cancellation::

        >>> L = T[-1]
        >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
        [2.22532e-5, 4.78309e-5, 3515.06]

    Now we extend the computation::

        >>> T = shanks(S[:25], T)
        >>> L = T[-1]
        >>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
        [3.75527e-19, 1.48478e-19, 2.96014e+17]

    The value for pi is now accurate to 18 digits. About 18 digits may
    also have been lost to cancellation.

    Here is an example with a geometric series, where the convergence
    is immediate (the sum is exactly 1)::

        >>> mp.dps = 15
        >>> for row in shanks([0.5, 0.75, 0.875, 0.9375, 0.96875]):
        ...     nprint(row)
        [4.0]
        [8.0, 1.0]

    **References**

    1. [GravesMorris]_

    2. [BenderOrszag]_ pp. 368-375

    """
    if len(seq) < 2:
        raise ValueError("seq should be of minimum length 2")
    if table:
        START = len(table)
    else:
        START = 0
        table = []
    STOP = len(seq) - 1
    if STOP & 1:
        STOP -= 1
    one = ctx.one
    eps = +ctx.eps
    if randomized:
        from random import Random
        rnd = Random()
        rnd.seed(START)
    for i in xrange(START, STOP):
        row = []
        for j in xrange(i+1):
            if j == 0:
                a, b = 0, seq[i+1]-seq[i]
            else:
                if j == 1:
                    a = seq[i]
                else:
                    a = table[i-1][j-2]
                b = row[j-1] - table[i-1][j-1]
            if not b:
                if randomized:
                    b = (1 + rnd.getrandbits(10))*eps
                elif i & 1:
                    return table[:-1]
                else:
                    return table
            row.append(a + one/b)
        table.append(row)
    return table


class levin_class:
    # levin: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
    r"""
    This interface implements Levin's (nonlinear) sequence transformation for
    convergence acceleration and summation of divergent series. It performs
    better than the Shanks/Wynn-epsilon algorithm for logarithmic convergent
    or alternating divergent series.

    Let *A* be the series we want to sum:

    .. math ::

        A = \sum_{k=0}^{\infty} a_k

    Attention: all `a_k` must be non-zero!

    Let `s_n` be the partial sums of this series:

    .. math ::

        s_n = \sum_{k=0}^n a_k.

    **Methods**

    Calling ``levin`` returns an object with the following methods.

    ``update(...)`` works with the list of individual terms `a_k` of *A*, and
    ``update_step(...)`` works with the list of partial sums `s_k` of *A*:

    .. code ::

        v, e = ...update([a_0, a_1,..., a_k])
        v, e = ...update_psum([s_0, s_1,..., s_k])

    ``step(...)`` works with the individual terms `a_k` and ``step_psum(...)``
    works with the partial sums `s_k`:

    .. code ::

        v, e = ...step(a_k)
        v, e = ...step_psum(s_k)

    *v* is the current estimate for *A*, and *e* is an error estimate which is
    simply the difference between the current estimate and the last estimate.
    One should not mix ``update``, ``update_psum``, ``step`` and ``step_psum``.

    **A word of caution**

    One can only hope for good results (i.e. convergence acceleration or
    resummation) if the `s_n` have some well defind asymptotic behavior for
    large `n` and are not erratic or random. Furthermore one usually needs very
    high working precision because of the numerical cancellation. If the working
    precision is insufficient, levin may produce silently numerical garbage.
    Furthermore even if the Levin-transformation converges, in the general case
    there is no proof that the result is mathematically sound. Only for very
    special classes of problems one can prove that the Levin-transformation
    converges to the expected result (for example Stieltjes-type integrals).
    Furthermore the Levin-transform is quite expensive (i.e. slow) in comparison
    to Shanks/Wynn-epsilon, Richardson & co.
    In summary one can say that the Levin-transformation is powerful but
    unreliable and that it may need a copious amount of working precision.

    The Levin transform has several variants differing in the choice of weights.
    Some variants are better suited for the possible flavours of convergence
    behaviour of *A* than other variants:

    .. code ::

       convergence behaviour   levin-u   levin-t   levin-v   shanks/wynn-epsilon

       logarithmic               +         -         +           -
       linear                    +         +         +           +
       alternating divergent     +         +         +           +

         "+" means the variant is suitable,"-" means the variant is not suitable;
         for comparison the Shanks/Wynn-epsilon transform is listed, too.

    The variant is controlled though the variant keyword (i.e. ``variant="u"``,
    ``variant="t"`` or ``variant="v"``). Overall "u" is probably the best choice.

    Finally it is possible to use the Sidi-S transform instead of the Levin transform
    by using the keyword ``method='sidi'``. The Sidi-S transform works better than the
    Levin transformation for some divergent series (see the examples).

    Parameters:

    .. code ::

       method      "levin" or "sidi" chooses either the Levin or the Sidi-S transformation
       variant     "u","t" or "v" chooses the weight variant.

    The Levin transform is also accessible through the nsum interface.
    ``method="l"`` or ``method="levin"`` select the normal Levin transform while
    ``method="sidi"``
    selects the Sidi-S transform. The variant is in both cases selected through the
    levin_variant keyword. The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise
    it will miss the point where the Levin transform converges resulting in numerical
    overflow/garbage. For highly divergent series a copious amount of working precision
    must be chosen.

    **Examples**

    First we sum the zeta function::

        >>> from mpmath import mp
        >>> mp.prec = 53
        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
        ...     L = mp.levin(method = "levin", variant = "u")
        ...     S, s, n = [], 0, 1
        ...     while 1:
        ...         s += mp.one / (n * n)
        ...         n += 1
        ...         S.append(s)
        ...         v, e = L.update_psum(S)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.pi ** 2 / 6))
        0.0
        >>> w = mp.nsum(lambda n: 1 / (n*n), [1, mp.inf], method = "levin", levin_variant = "u")
        >>> print(mp.chop(v - w))
        0.0

    Now we sum the zeta function outside its range of convergence
    (attention: This does not work at the negative integers!)::

        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
        ...     L = mp.levin(method = "levin", variant = "v")
        ...     A, n = [], 1
        ...     while 1:
        ...         s = mp.mpf(n) ** (2 + 3j)
        ...         n += 1
        ...         A.append(s)
        ...         v, e = L.update(A)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.zeta(-2-3j)))
        0.0
        >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
        >>> print(mp.chop(v - w))
        0.0

    Now we sum the divergent asymptotic expansion of an integral related to the
    exponential integral (see also [2] p.373). The Sidi-S transform works best here::

        >>> z = mp.mpf(10)
        >>> exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
        >>> # exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
        >>> eps = mp.mpf(mp.eps)
        >>> with mp.extraprec(2 * mp.prec): # high working precisions are mandatory for divergent resummation
        ...     L = mp.levin(method = "sidi", variant = "t")
        ...     n = 0
        ...     while 1:
        ...         s = (-1)**n * mp.fac(n) * z ** (-n)
        ...         v, e = L.step(s)
        ...         n += 1
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - exact))
        0.0
        >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
        >>> print(mp.chop(v - w))
        0.0

    Another highly divergent integral is also summable::

        >>> z = mp.mpf(2)
        >>> eps = mp.mpf(mp.eps)
        >>> exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
        >>> # exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
        >>> with mp.extraprec(7 * mp.prec):  # we need copious amount of precision to sum this highly divergent series
        ...     L = mp.levin(method = "levin", variant = "t")
        ...     n, s = 0, 0
        ...     while 1:
        ...         s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
        ...         n += 1
        ...         v, e = L.step_psum(s)
        ...         if e < eps:
        ...             break
        ...         if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - exact))
        0.0
        >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
        ...   [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
        >>> print(mp.chop(v - w))
        0.0

    These examples run with 15-20 decimal digits precision. For higher precision the
    working precision must be raised.

    **Examples for nsum**

    Here we calculate Euler's constant as the constant term in the Laurent
    expansion of `\zeta(s)` at `s=1`. This sum converges extremly slowly because of
    the logarithmic convergence behaviour of the Dirichlet series for zeta::

        >>> mp.dps = 30
        >>> z = mp.mpf(10) ** (-10)
        >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z
        >>> print(mp.chop(a - mp.euler, tol = 1e-10))
        0.0

    The Sidi-S transform performs excellently for the alternating series of `\log(2)`::

        >>> a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi")
        >>> print(mp.chop(a - mp.log(2)))
        0.0

    Hypergeometric series can also be summed outside their range of convergence.
    The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise it will miss the
    point where the Levin transform converges resulting in numerical overflow/garbage::

        >>> z = 2 + 1j
        >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
        >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
        >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
        >>> print(mp.chop(exact-v))
        0.0

    References:

      [1] E.J. Weniger - "Nonlinear Sequence Transformations for the Acceleration of
          Convergence and the Summation of Divergent Series" arXiv:math/0306302

      [2] A. Sidi - "Pratical Extrapolation Methods"

      [3] H.H.H. Homeier - "Scalar Levin-Type Sequence Transformations" arXiv:math/0005209

    """

    def __init__(self, method = "levin", variant = "u"):
        self.variant = variant
        self.n = 0
        self.a0 = 0
        self.theta = 1
        self.A = []
        self.B = []
        self.last = 0
        self.last_s = False

        if method == "levin":
            self.factor = self.factor_levin
        elif method == "sidi":
            self.factor = self.factor_sidi
        else:
            raise ValueError("levin: unknown method \"%s\"" % method)

    def factor_levin(self, i):
        # original levin
        # [1] p.50,e.7.5-7 (with n-j replaced by i)
        return (self.theta + i) * (self.theta + self.n - 1) ** (self.n - i - 2) / self.ctx.mpf(self.theta + self.n) ** (self.n - i - 1)

    def factor_sidi(self, i):
        # sidi analogon to levin (factorial series)
        # [1] p.59,e.8.3-16 (with n-j replaced by i)
        return (self.theta + self.n - 1) * (self.theta + self.n - 2) / self.ctx.mpf((self.theta + 2 * self.n - i - 2) * (self.theta + 2 * self.n - i - 3))

    def run(self, s, a0, a1 = 0):
        if self.variant=="t":
            # levin t
            w=a0
        elif self.variant=="u":
            # levin u
            w=a0*(self.theta+self.n)
        elif self.variant=="v":
            # levin v
            w=a0*a1/(a0-a1)
        else:
            assert False, "unknown variant"

        if w==0:
            raise ValueError("levin: zero weight")

        self.A.append(s/w)
        self.B.append(1/w)

        for i in range(self.n-1,-1,-1):
            if i==self.n-1:
                f=1
            else:
                f=self.factor(i)

            self.A[i]=self.A[i+1]-f*self.A[i]
            self.B[i]=self.B[i+1]-f*self.B[i]

        self.n+=1

    ###########################################################################

    def update_psum(self,S):
        """
        This routine applies the convergence acceleration to the list of partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k, k = 0..n)

        v, e = ...update_psum([s_0, s_1,..., s_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.run(S[0],S[0])
            while self.n<len(S):
                self.run(S[self.n],S[self.n]-S[self.n-1])
        else:
            if len(S)==1:
                self.last=0
                return S[0],abs(S[0])

            if self.n==0:
                self.a1=S[1]-S[0]
                self.run(S[0],S[0],self.a1)

            while self.n<len(S)-1:
                na1=S[self.n+1]-S[self.n]
                self.run(S[self.n],self.a1,na1)
                self.a1=na1

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    def update(self,X):
        """
        This routine applies the convergence acceleration to the list of individual terms.

        A = sum(a_k, k = 0..infinity)

        v, e = ...update([a_0, a_1,..., a_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.s=X[0]
                self.run(self.s,X[0])
            while self.n<len(X):
                self.s+=X[self.n]
                self.run(self.s,X[self.n])
        else:
            if len(X)==1:
                self.last=0
                return X[0],abs(X[0])

            if self.n==0:
                self.s=X[0]
                self.run(self.s,X[0],X[1])

            while self.n<len(X)-1:
                self.s+=X[self.n]
                self.run(self.s,X[self.n],X[self.n+1])

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    ###########################################################################

    def step_psum(self,s):
        """
        This routine applies the convergence acceleration to the partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k, k = 0..n)

        v, e = ...step_psum(s_k)

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.last_s=s
                self.run(s,s)
            else:
                self.run(s,s-self.last_s)
                self.last_s=s
        else:
            if isinstance(self.last_s,bool):
                self.last_s=s
                self.last_w=s
                self.last=0
                return s,abs(s)

            na1=s-self.last_s
            self.run(self.last_s,self.last_w,na1)
            self.last_w=na1
            self.last_s=s

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

    def step(self,x):
        """
        This routine applies the convergence acceleration to the individual terms.

        A = sum(a_k, k = 0..infinity)

        v, e = ...step(a_k)

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        if self.variant!="v":
            if self.n==0:
                self.s=x
                self.run(self.s,x)
            else:
                self.s+=x
                self.run(self.s,x)
        else:
            if isinstance(self.last_s,bool):
                self.last_s=x
                self.s=0
                self.last=0
                return x,abs(x)

            self.s+=self.last_s
            self.run(self.s,self.last_s,x)
            self.last_s=x

        value=self.A[0]/self.B[0]
        err=abs(value-self.last)
        self.last=value

        return value,err

def levin(ctx, method = "levin", variant = "u"):
    L = levin_class(method = method, variant = variant)
    L.ctx = ctx
    return L

levin.__doc__ = levin_class.__doc__
defun(levin)


class cohen_alt_class:
    # cohen_alt: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
    r"""
    This interface implements the convergence acceleration of alternating series
    as described in H. Cohen, F.R. Villegas, D. Zagier - "Convergence Acceleration
    of Alternating Series". This series transformation works only well if the
    individual terms of the series have an alternating sign. It belongs to the
    class of linear series transformations (in contrast to the Shanks/Wynn-epsilon
    or Levin transform). This series transformation is also able to sum some types
    of divergent series. See the paper under which conditions this resummation is
    mathematical sound.

    Let *A* be the series we want to sum:

    .. math ::

        A = \sum_{k=0}^{\infty} a_k

    Let `s_n` be the partial sums of this series:

    .. math ::

        s_n = \sum_{k=0}^n a_k.


    **Interface**

    Calling ``cohen_alt`` returns an object with the following methods.

    Then ``update(...)`` works with the list of individual terms `a_k` and
    ``update_psum(...)`` works with the list of partial sums `s_k`:

    .. code ::

        v, e = ...update([a_0, a_1,..., a_k])
        v, e = ...update_psum([s_0, s_1,..., s_k])

    *v* is the current estimate for *A*, and *e* is an error estimate which is
    simply the difference between the current estimate and the last estimate.

    **Examples**

    Here we compute the alternating zeta function using ``update_psum``::

        >>> from mpmath import mp
        >>> AC = mp.cohen_alt()
        >>> S, s, n = [], 0, 1
        >>> while 1:
        ...     s += -((-1) ** n) * mp.one / (n * n)
        ...     n += 1
        ...     S.append(s)
        ...     v, e = AC.update_psum(S)
        ...     if e < mp.eps:
        ...         break
        ...     if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> print(mp.chop(v - mp.pi ** 2 / 12))
        0.0

    Here we compute the product `\prod_{n=1}^{\infty} \Gamma(1+1/(2n-1)) / \Gamma(1+1/(2n))`::

        >>> A = []
        >>> AC = mp.cohen_alt()
        >>> n = 1
        >>> while 1:
        ...     A.append( mp.loggamma(1 + mp.one / (2 * n - 1)))
        ...     A.append(-mp.loggamma(1 + mp.one / (2 * n)))
        ...     n += 1
        ...     v, e = AC.update(A)
        ...     if e < mp.eps:
        ...         break
        ...     if n > 1000: raise RuntimeError("iteration limit exceeded")
        >>> v = mp.exp(v)
        >>> print(mp.chop(v - 1.06215090557106, tol = 1e-12))
        0.0

    ``cohen_alt`` is also accessible through the :func:`~mpmath.nsum` interface::

        >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.log(2)))
        0.0
        >>> v = mp.nsum(lambda n: (-1)**n / (2 * n + 1), [0, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.pi / 4))
        0.0
        >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
        >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
        0.0

    """

    def __init__(self):
        self.last=0

    def update(self, A):
        """
        This routine applies the convergence acceleration to the list of individual terms.

        A    = sum(a_k, k = 0..infinity)

        v, e = ...update([a_0, a_1,..., a_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        n = len(A)
        d = (3 + self.ctx.sqrt(8)) ** n
        d = (d + 1 / d) / 2
        b = -self.ctx.one
        c = -d
        s = 0

        for k in xrange(n):
            c = b - c
            if k % 2 == 0:
                s = s + c * A[k]
            else:
                s = s - c * A[k]
            b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one))

        value = s / d

        err = abs(value - self.last)
        self.last = value

        return value, err

    def update_psum(self, S):
        """
        This routine applies the convergence acceleration to the list of partial sums.

        A   = sum(a_k, k = 0..infinity)
        s_n = sum(a_k ,k = 0..n)

        v, e = ...update_psum([s_0, s_1,..., s_k])

        output:
          v      current estimate of the series A
          e      an error estimate which is simply the difference between the current
                 estimate and the last estimate.
        """

        n = len(S)
        d = (3 + self.ctx.sqrt(8)) ** n
        d = (d + 1 / d) / 2
        b = self.ctx.one
        s = 0

        for k in xrange(n):
            b = 2 * (n + k) * (n - k) * b / ((2 * k + 1) * (k + self.ctx.one))
            s += b * S[k]

        value = s / d

        err = abs(value - self.last)
        self.last = value

        return value, err

def cohen_alt(ctx):
    L = cohen_alt_class()
    L.ctx = ctx
    return L

cohen_alt.__doc__ = cohen_alt_class.__doc__
defun(cohen_alt)


@defun
def sumap(ctx, f, interval, integral=None, error=False):
    r"""
    Evaluates an infinite series of an analytic summand *f* using the
    Abel-Plana formula

    .. math ::

        \sum_{k=0}^{\infty} f(k) = \int_0^{\infty} f(t) dt + \frac{1}{2} f(0) +
            i \int_0^{\infty} \frac{f(it)-f(-it)}{e^{2\pi t}-1} dt.

    Unlike the Euler-Maclaurin formula (see :func:`~mpmath.sumem`),
    the Abel-Plana formula does not require derivatives. However,
    it only works when `|f(it)-f(-it)|` does not
    increase too rapidly with `t`.

    **Examples**

    The Abel-Plana formula is particularly useful when the summand
    decreases like a power of `k`; for example when the sum is a pure
    zeta function::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> sumap(lambda k: 1/k**2.5, [1,inf])
        1.34148725725091717975677
        >>> zeta(2.5)
        1.34148725725091717975677
        >>> sumap(lambda k: 1/(k+1j)**(2.5+2.5j), [1,inf])
        (-3.385361068546473342286084 - 0.7432082105196321803869551j)
        >>> zeta(2.5+2.5j, 1+1j)
        (-3.385361068546473342286084 - 0.7432082105196321803869551j)

    If the series is alternating, numerical quadrature along the real
    line is likely to give poor results, so it is better to evaluate
    the first term symbolically whenever possible:

        >>> n=3; z=-0.75
        >>> I = expint(n,-log(z))
        >>> chop(sumap(lambda k: z**k / k**n, [1,inf], integral=I))
        -0.6917036036904594510141448
        >>> polylog(n,z)
        -0.6917036036904594510141448

    """
    prec = ctx.prec
    try:
        ctx.prec += 10
        a, b = interval
        if  b != ctx.inf:
            raise ValueError("b should be equal to ctx.inf")
        g = lambda x: f(x+a)
        if integral is None:
            i1, err1 = ctx.quad(g, [0,ctx.inf], error=True)
        else:
            i1, err1 = integral, 0
        j = ctx.j
        p = ctx.pi * 2
        if ctx._is_real_type(i1):
            h = lambda t: -2 * ctx.im(g(j*t)) / ctx.expm1(p*t)
        else:
            h = lambda t: j*(g(j*t)-g(-j*t)) / ctx.expm1(p*t)
        i2, err2 = ctx.quad(h, [0,ctx.inf], error=True)
        err = err1+err2
        v = i1+i2+0.5*g(ctx.mpf(0))
    finally:
        ctx.prec = prec
    if error:
        return +v, err
    return +v


@defun
def sumem(ctx, f, interval, tol=None, reject=10, integral=None,
    adiffs=None, bdiffs=None, verbose=False, error=False,
    _fast_abort=False):
    r"""
    Uses the Euler-Maclaurin formula to compute an approximation accurate
    to within ``tol`` (which defaults to the present epsilon) of the sum

    .. math ::

        S = \sum_{k=a}^b f(k)

    where `(a,b)` are given by ``interval`` and `a` or `b` may be
    infinite. The approximation is

    .. math ::

        S \sim \int_a^b f(x) \,dx + \frac{f(a)+f(b)}{2} +
        \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!}
        \left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right).

    The last sum in the Euler-Maclaurin formula is not generally
    convergent (a notable exception is if `f` is a polynomial, in
    which case Euler-Maclaurin actually gives an exact result).

    The summation is stopped as soon as the quotient between two
    consecutive terms falls below *reject*. That is, by default
    (*reject* = 10), the summation is continued as long as each
    term adds at least one decimal.

    Although not convergent, convergence to a given tolerance can
    often be "forced" if `b = \infty` by summing up to `a+N` and then
    applying the Euler-Maclaurin formula to the sum over the range
    `(a+N+1, \ldots, \infty)`. This procedure is implemented by
    :func:`~mpmath.nsum`.

    By default numerical quadrature and differentiation is used.
    If the symbolic values of the integral and endpoint derivatives
    are known, it is more efficient to pass the value of the
    integral explicitly as ``integral`` and the derivatives
    explicitly as ``adiffs`` and ``bdiffs``. The derivatives
    should be given as iterables that yield
    `f(a), f'(a), f''(a), \ldots` (and the equivalent for `b`).

    **Examples**

    Summation of an infinite series, with automatic and symbolic
    integral and derivative values (the second should be much faster)::

        >>> from mpmath import *
        >>> mp.dps = 50; mp.pretty = True
        >>> sumem(lambda n: 1/n**2, [32, inf])
        0.03174336652030209012658168043874142714132886413417
        >>> I = mpf(1)/32
        >>> D = adiffs=((-1)**n*fac(n+1)*32**(-2-n) for n in range(999))
        >>> sumem(lambda n: 1/n**2, [32, inf], integral=I, adiffs=D)
        0.03174336652030209012658168043874142714132886413417

    An exact evaluation of a finite polynomial sum::

        >>> sumem(lambda n: n**5-12*n**2+3*n, [-100000, 200000])
        10500155000624963999742499550000.0
        >>> print(sum(n**5-12*n**2+3*n for n in range(-100000, 200001)))
        10500155000624963999742499550000

    """
    tol = tol or +ctx.eps
    interval = ctx._as_points(interval)
    a = ctx.convert(interval[0])
    b = ctx.convert(interval[-1])
    err = ctx.zero
    prev = 0
    M = 10000
    if a == ctx.ninf: adiffs = (0 for n in xrange(M))
    else:             adiffs = adiffs or ctx.diffs(f, a)
    if b == ctx.inf:  bdiffs = (0 for n in xrange(M))
    else:             bdiffs = bdiffs or ctx.diffs(f, b)
    orig = ctx.prec
    #verbose = 1
    try:
        ctx.prec += 10
        s = ctx.zero
        for k, (da, db) in enumerate(izip(adiffs, bdiffs)):
            if k & 1:
                term = (db-da) * ctx.bernoulli(k+1) / ctx.factorial(k+1)
                mag = abs(term)
                if verbose:
                    print("term", k, "magnitude =", ctx.nstr(mag))
                if k > 4 and mag < tol:
                    s += term
                    break
                elif k > 4 and abs(prev) / mag < reject:
                    err += mag
                    if _fast_abort:
                        return [s, (s, err)][error]
                    if verbose:
                        print("Failed to converge")
                    break
                else:
                    s += term
                prev = term
        # Endpoint correction
        if a != ctx.ninf: s += f(a)/2
        if b != ctx.inf: s += f(b)/2
        # Tail integral
        if verbose:
            print("Integrating f(x) from x = %s to %s" % (ctx.nstr(a), ctx.nstr(b)))
        if integral:
            s += integral
        else:
            integral, ierr = ctx.quad(f, interval, error=True)
            if verbose:
                print("Integration error:", ierr)
            s += integral
            err += ierr
    finally:
        ctx.prec = orig
    if error:
        return s, err
    else:
        return s

@defun
def adaptive_extrapolation(ctx, update, emfun, kwargs):
    option = kwargs.get
    if ctx._fixed_precision:
        tol = option('tol', ctx.eps*2**10)
    else:
        tol = option('tol', ctx.eps/2**10)
    verbose = option('verbose', False)
    maxterms = option('maxterms', ctx.dps*10)
    method = set(option('method', 'r+s').split('+'))
    skip = option('skip', 0)
    steps = iter(option('steps', xrange(10, 10**9, 10)))
    strict = option('strict')
    #steps = (10 for i in xrange(1000))
    summer=[]
    if 'd' in method or 'direct' in method:
        TRY_RICHARDSON = TRY_SHANKS = TRY_EULER_MACLAURIN = False
    else:
        TRY_RICHARDSON = ('r' in method) or ('richardson' in method)
        TRY_SHANKS = ('s' in method) or ('shanks' in method)
        TRY_EULER_MACLAURIN = ('e' in method) or \
            ('euler-maclaurin' in method)

        def init_levin(m):
            variant = kwargs.get("levin_variant", "u")
            if isinstance(variant, str):
                if variant == "all":
                    variant = ["u", "v", "t"]
                else:
                    variant = [variant]
            for s in variant:
                L = levin_class(method = m, variant = s)
                L.ctx = ctx
                L.name = m + "(" + s + ")"
                summer.append(L)

        if ('l' in method) or ('levin' in method):
            init_levin("levin")

        if ('sidi' in method):
            init_levin("sidi")

        if ('a' in method) or ('alternating' in method):
            L = cohen_alt_class()
            L.ctx = ctx
            L.name = "alternating"
            summer.append(L)

    last_richardson_value = 0
    shanks_table = []
    index = 0
    step = 10
    partial = []
    best = ctx.zero
    orig = ctx.prec
    try:
        if 'workprec' in kwargs:
            ctx.prec = kwargs['workprec']
        elif TRY_RICHARDSON or TRY_SHANKS or len(summer)!=0:
            ctx.prec = (ctx.prec+10) * 4
        else:
            ctx.prec += 30
        while 1:
            if index >= maxterms:
                break

            # Get new batch of terms
            try:
                step = next(steps)
            except StopIteration:
                pass
            if verbose:
                print("-"*70)
                print("Adding terms #%i-#%i" % (index, index+step))
            update(partial, xrange(index, index+step))
            index += step

            # Check direct error
            best = partial[-1]
            error = abs(best - partial[-2])
            if verbose:
                print("Direct error: %s" % ctx.nstr(error))
            if error <= tol:
                return best

            # Check each extrapolation method
            if TRY_RICHARDSON:
                value, maxc = ctx.richardson(partial)
                # Convergence
                richardson_error = abs(value - last_richardson_value)
                if verbose:
                    print("Richardson error: %s" % ctx.nstr(richardson_error))
                # Convergence
                if richardson_error <= tol:
                    return value
                last_richardson_value = value
                # Unreliable due to cancellation
                if ctx.eps*maxc > tol:
                    if verbose:
                        print("Ran out of precision for Richardson")
                    TRY_RICHARDSON = False
                if richardson_error < error:
                    error = richardson_error
                    best = value
            if TRY_SHANKS:
                shanks_table = ctx.shanks(partial, shanks_table, randomized=True)
                row = shanks_table[-1]
                if len(row) == 2:
                    est1 = row[-1]
                    shanks_error = 0
                else:
                    est1, maxc, est2 = row[-1], abs(row[-2]), row[-3]
                    shanks_error = abs(est1-est2)
                if verbose:
                    print("Shanks error: %s" % ctx.nstr(shanks_error))
                if shanks_error <= tol:
                    return est1
                if ctx.eps*maxc > tol:
                    if verbose:
                        print("Ran out of precision for Shanks")
                    TRY_SHANKS = False
                if shanks_error < error:
                    error = shanks_error
                    best = est1
            for L in summer:
                est, lerror = L.update_psum(partial)
                if verbose:
                    print("%s error: %s" % (L.name, ctx.nstr(lerror)))
                if lerror <= tol:
                    return est
                if lerror < error:
                    error = lerror
                    best = est
            if TRY_EULER_MACLAURIN:
                if ctx.almosteq(ctx.mpc(ctx.sign(partial[-1]) / ctx.sign(partial[-2])), -1):
                    if verbose:
                        print ("NOT using Euler-Maclaurin: the series appears"
                            " to be alternating, so numerical\n quadrature"
                            " will most likely fail")
                    TRY_EULER_MACLAURIN = False
                else:
                    value, em_error = emfun(index, tol)
                    value += partial[-1]
                    if verbose:
                        print("Euler-Maclaurin error: %s" % ctx.nstr(em_error))
                    if em_error <= tol:
                        return value
                    if em_error < error:
                        best = value
    finally:
        ctx.prec = orig
    if strict:
        raise ctx.NoConvergence
    if verbose:
        print("Warning: failed to converge to target accuracy")
    return best

@defun
def nsum(ctx, f, *intervals, **options):
    r"""
    Computes the sum

    .. math :: S = \sum_{k=a}^b f(k)

    where `(a, b)` = *interval*, and where `a = -\infty` and/or
    `b = \infty` are allowed, or more generally

    .. math :: S = \sum_{k_1=a_1}^{b_1} \cdots
                   \sum_{k_n=a_n}^{b_n} f(k_1,\ldots,k_n)

    if multiple intervals are given.

    Two examples of infinite series that can be summed by :func:`~mpmath.nsum`,
    where the first converges rapidly and the second converges slowly,
    are::

        >>> from mpmath import *
        >>> mp.dps = 15; mp.pretty = True
        >>> nsum(lambda n: 1/fac(n), [0, inf])
        2.71828182845905
        >>> nsum(lambda n: 1/n**2, [1, inf])
        1.64493406684823

    When appropriate, :func:`~mpmath.nsum` applies convergence acceleration to
    accurately estimate the sums of slowly convergent series. If the series is
    finite, :func:`~mpmath.nsum` currently does not attempt to perform any
    extrapolation, and simply calls :func:`~mpmath.fsum`.

    Multidimensional infinite series are reduced to a single-dimensional
    series over expanding hypercubes; if both infinite and finite dimensions
    are present, the finite ranges are moved innermost. For more advanced
    control over the summation order, use nested calls to :func:`~mpmath.nsum`,
    or manually rewrite the sum as a single-dimensional series.

    **Options**

    *tol*
        Desired maximum final error. Defaults roughly to the
        epsilon of the working precision.

    *method*
        Which summation algorithm to use (described below).
        Default: ``'richardson+shanks'``.

    *maxterms*
        Cancel after at most this many terms. Default: 10*dps.

    *steps*
        An iterable giving the number of terms to add between
        each extrapolation attempt. The default sequence is
        [10, 20, 30, 40, ...]. For example, if you know that
        approximately 100 terms will be required, efficiency might be
        improved by setting this to [100, 10]. Then the first
        extrapolation will be performed after 100 terms, the second
        after 110, etc.

    *verbose*
        Print details about progress.

    *ignore*
        If enabled, any term that raises ``ArithmeticError``
        or ``ValueError`` (e.g. through division by zero) is replaced
        by a zero. This is convenient for lattice sums with
        a singular term near the origin.

    **Methods**

    Unfortunately, an algorithm that can efficiently sum any infinite
    series does not exist. :func:`~mpmath.nsum` implements several different
    algorithms that each work well in different cases. The *method*
    keyword argument selects a method.

    The default method is ``'r+s'``, i.e. both Richardson extrapolation
    and Shanks transformation is attempted. A slower method that
    handles more cases is ``'r+s+e'``. For very high precision
    summation, or if the summation needs to be fast (for example if
    multiple sums need to be evaluated), it is a good idea to
    investigate which one method works best and only use that.

    ``'richardson'`` / ``'r'``:
        Uses Richardson extrapolation. Provides useful extrapolation
        when `f(k) \sim P(k)/Q(k)` or when `f(k) \sim (-1)^k P(k)/Q(k)`
        for polynomials `P` and `Q`. See :func:`~mpmath.richardson` for
        additional information.

    ``'shanks'`` / ``'s'``:
        Uses Shanks transformation. Typically provides useful
        extrapolation when `f(k) \sim c^k` or when successive terms
        alternate signs. Is able to sum some divergent series.
        See :func:`~mpmath.shanks` for additional information.

    ``'levin'`` / ``'l'``:
        Uses the Levin transformation. It performs better than the Shanks
        transformation for logarithmic convergent or alternating divergent
        series. The ``'levin_variant'``-keyword selects the variant. Valid
        choices are "u", "t", "v" and "all" whereby "all" uses all three
        u,t and v simultanously (This is good for performance comparison in
        conjunction with "verbose=True"). Instead of the Levin transform one can
        also use the Sidi-S transform by selecting the method ``'sidi'``.
        See :func:`~mpmath.levin` for additional details.

    ``'alternating'`` / ``'a'``:
        This is the convergence acceleration of alternating series developped
        by Cohen, Villegras and Zagier.
        See :func:`~mpmath.cohen_alt` for additional details.

    ``'euler-maclaurin'`` / ``'e'``:
        Uses the Euler-Maclaurin summation formula to approximate
        the remainder sum by an integral. This requires high-order
        numerical derivatives and numerical integration. The advantage
        of this algorithm is that it works regardless of the
        decay rate of `f`, as long as `f` is sufficiently smooth.
        See :func:`~mpmath.sumem` for additional information.

    ``'direct'`` / ``'d'``:
        Does not perform any extrapolation. This can be used
        (and should only be used for) rapidly convergent series.
        The summation automatically stops when the terms
        decrease below the target tolerance.

    **Basic examples**

    A finite sum::

        >>> nsum(lambda k: 1/k, [1, 6])
        2.45

    Summation of a series going to negative infinity and a doubly
    infinite series::

        >>> nsum(lambda k: 1/k**2, [-inf, -1])
        1.64493406684823
        >>> nsum(lambda k: 1/(1+k**2), [-inf, inf])
        3.15334809493716

    :func:`~mpmath.nsum` handles sums of complex numbers::

        >>> nsum(lambda k: (0.5+0.25j)**k, [0, inf])
        (1.6 + 0.8j)

    The following sum converges very rapidly, so it is most
    efficient to sum it by disabling convergence acceleration::

        >>> mp.dps = 1000
        >>> a = nsum(lambda k: -(-1)**k * k**2 / fac(2*k), [1, inf],
        ...     method='direct')
        >>> b = (cos(1)+sin(1))/4
        >>> abs(a-b) < mpf('1e-998')
        True

    **Examples with Richardson extrapolation**

    Richardson extrapolation works well for sums over rational
    functions, as well as their alternating counterparts::

        >>> mp.dps = 50
        >>> nsum(lambda k: 1 / k**3, [1, inf],
        ...     method='richardson')
        1.2020569031595942853997381615114499907649862923405
        >>> zeta(3)
        1.2020569031595942853997381615114499907649862923405

        >>> nsum(lambda n: (n + 3)/(n**3 + n**2), [1, inf],
        ...     method='richardson')
        2.9348022005446793094172454999380755676568497036204
        >>> pi**2/2-2
        2.9348022005446793094172454999380755676568497036204

        >>> nsum(lambda k: (-1)**k / k**3, [1, inf],
        ...     method='richardson')
        -0.90154267736969571404980362113358749307373971925537
        >>> -3*zeta(3)/4
        -0.90154267736969571404980362113358749307373971925538

    **Examples with Shanks transformation**

    The Shanks transformation works well for geometric series
    and typically provides excellent acceleration for Taylor
    series near the border of their disk of convergence.
    Here we apply it to a series for `\log(2)`, which can be
    seen as the Taylor series for `\log(1+x)` with `x = 1`::

        >>> nsum(lambda k: -(-1)**k/k, [1, inf],
        ...     method='shanks')
        0.69314718055994530941723212145817656807550013436025
        >>> log(2)
        0.69314718055994530941723212145817656807550013436025

    Here we apply it to a slowly convergent geometric series::

        >>> nsum(lambda k: mpf('0.995')**k, [0, inf],
        ...     method='shanks')
        200.0

    Finally, Shanks' method works very well for alternating series
    where `f(k) = (-1)^k g(k)`, and often does so regardless of
    the exact decay rate of `g(k)`::

        >>> mp.dps = 15
        >>> nsum(lambda k: (-1)**(k+1) / k**1.5, [1, inf],
        ...     method='shanks')
        0.765147024625408
        >>> (2-sqrt(2))*zeta(1.5)/2
        0.765147024625408

    The following slowly convergent alternating series has no known
    closed-form value. Evaluating the sum a second time at higher
    precision indicates that the value is probably correct::

        >>> nsum(lambda k: (-1)**k / log(k), [2, inf],
        ...     method='shanks')
        0.924299897222939
        >>> mp.dps = 30
        >>> nsum(lambda k: (-1)**k / log(k), [2, inf],
        ...     method='shanks')
        0.92429989722293885595957018136

    **Examples with Levin transformation**

    The following example calculates Euler's constant as the constant term in
    the Laurent expansion of zeta(s) at s=1. This sum converges extremly slow
    because of the logarithmic convergence behaviour of the Dirichlet series
    for zeta.

      >>> mp.dps = 30
      >>> z = mp.mpf(10) ** (-10)
      >>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "levin") - 1 / z
      >>> print(mp.chop(a - mp.euler, tol = 1e-10))
      0.0

    Now we sum the zeta function outside its range of convergence
    (attention: This does not work at the negative integers!):

      >>> mp.dps = 15
      >>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
      >>> print(mp.chop(w - mp.zeta(-2-3j)))
      0.0

    The next example resummates an asymptotic series expansion of an integral
    related to the exponential integral.

      >>> mp.dps = 15
      >>> z = mp.mpf(10)
      >>> # exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
      >>> exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
      >>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
      >>> print(mp.chop(w - exact))
      0.0

    Following highly divergent asymptotic expansion needs some care. Firstly we
    need copious amount of working precision. Secondly the stepsize must not be
    chosen to large, otherwise nsum may miss the point where the Levin transform
    converges and reach the point where only numerical garbage is produced due to
    numerical cancellation.

      >>> mp.dps = 15
      >>> z = mp.mpf(2)
      >>> # exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
      >>> exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
      >>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
      ...   [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
      >>> print(mp.chop(w - exact))
      0.0

    The hypergeoemtric function can also be summed outside its range of convergence:

      >>> mp.dps = 15
      >>> z = 2 + 1j
      >>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
      >>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
      >>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
      >>> print(mp.chop(exact-v))
      0.0

    **Examples with Cohen's alternating series resummation**

      The next example sums the alternating zeta function:

      >>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
      >>> print(mp.chop(v - mp.log(2)))
      0.0

      The derivate of the alternating zeta function outside its range of
      convergence:

      >>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
      >>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
      0.0

    **Examples with Euler-Maclaurin summation**

    The sum in the following example has the wrong rate of convergence
    for either Richardson or Shanks to be effective.

        >>> f = lambda k: log(k)/k**2.5
        >>> mp.dps = 15
        >>> nsum(f, [1, inf], method='euler-maclaurin')
        0.38734195032621
        >>> -diff(zeta, 2.5)
        0.38734195032621

    Increasing ``steps`` improves speed at higher precision::

        >>> mp.dps = 50
        >>> nsum(f, [1, inf], method='euler-maclaurin', steps=[250])
        0.38734195032620997271199237593105101319948228874688
        >>> -diff(zeta, 2.5)
        0.38734195032620997271199237593105101319948228874688

    **Divergent series**

    The Shanks transformation is able to sum some *divergent*
    series. In particular, it is often able to sum Taylor series
    beyond their radius of convergence (this is due to a relation
    between the Shanks transformation and Pade approximations;
    see :func:`~mpmath.pade` for an alternative way to evaluate divergent
    Taylor series). Furthermore the Levin-transform examples above
    contain some divergent series resummation.

    Here we apply it to `\log(1+x)` far outside the region of
    convergence::

        >>> mp.dps = 50
        >>> nsum(lambda k: -(-9)**k/k, [1, inf],
        ...     method='shanks')
        2.3025850929940456840179914546843642076011014886288
        >>> log(10)
        2.3025850929940456840179914546843642076011014886288

    A particular type of divergent series that can be summed
    using the Shanks transformation is geometric series.
    The result is the same as using the closed-form formula
    for an infinite geometric series::

        >>> mp.dps = 15
        >>> for n in range(-8, 8):
        ...     if n == 1:
        ...         continue
        ...     print("%s %s %s" % (mpf(n), mpf(1)/(1-n),
        ...         nsum(lambda k: n**k, [0, inf], method='shanks')))
        ...
        -8.0 0.111111111111111 0.111111111111111
        -7.0 0.125 0.125
        -6.0 0.142857142857143 0.142857142857143
        -5.0 0.166666666666667 0.166666666666667
        -4.0 0.2 0.2
        -3.0 0.25 0.25
        -2.0 0.333333333333333 0.333333333333333
        -1.0 0.5 0.5
        0.0 1.0 1.0
        2.0 -1.0 -1.0
        3.0 -0.5 -0.5
        4.0 -0.333333333333333 -0.333333333333333
        5.0 -0.25 -0.25
        6.0 -0.2 -0.2
        7.0 -0.166666666666667 -0.166666666666667

    **Multidimensional sums**

    Any combination of finite and infinite ranges is allowed for the
    summation indices::

        >>> mp.dps = 15
        >>> nsum(lambda x,y: x+y, [2,3], [4,5])
        28.0
        >>> nsum(lambda x,y: x/2**y, [1,3], [1,inf])
        6.0
        >>> nsum(lambda x,y: y/2**x, [1,inf], [1,3])
        6.0
        >>> nsum(lambda x,y,z: z/(2**x*2**y), [1,inf], [1,inf], [3,4])
        7.0
        >>> nsum(lambda x,y,z: y/(2**x*2**z), [1,inf], [3,4], [1,inf])
        7.0
        >>> nsum(lambda x,y,z: x/(2**z*2**y), [3,4], [1,inf], [1,inf])
        7.0

    Some nice examples of double series with analytic solutions or
    reductions to single-dimensional series (see [1])::

        >>> nsum(lambda m, n: 1/2**(m*n), [1,inf], [1,inf])
        1.60669515241529
        >>> nsum(lambda n: 1/(2**n-1), [1,inf])
        1.60669515241529

        >>> nsum(lambda i,j: (-1)**(i+j)/(i**2+j**2), [1,inf], [1,inf])
        0.278070510848213
        >>> pi*(pi-3*ln2)/12
        0.278070510848213

        >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**2, [1,inf], [1,inf])
        0.129319852864168
        >>> altzeta(2) - altzeta(1)
        0.129319852864168

        >>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**3, [1,inf], [1,inf])
        0.0790756439455825
        >>> altzeta(3) - altzeta(2)
        0.0790756439455825

        >>> nsum(lambda m,n: m**2*n/(3**m*(n*3**m+m*3**n)),
        ...     [1,inf], [1,inf])
        0.28125
        >>> mpf(9)/32
        0.28125

        >>> nsum(lambda i,j: fac(i-1)*fac(j-1)/fac(i+j),
        ...     [1,inf], [1,inf], workprec=400)
        1.64493406684823
        >>> zeta(2)
        1.64493406684823

    A hard example of a multidimensional sum is the Madelung constant
    in three dimensions (see [2]). The defining sum converges very
    slowly and only conditionally, so :func:`~mpmath.nsum` is lucky to
    obtain an accurate value through convergence acceleration. The
    second evaluation below uses a much more efficient, rapidly
    convergent 2D sum::

        >>> nsum(lambda x,y,z: (-1)**(x+y+z)/(x*x+y*y+z*z)**0.5,
        ...     [-inf,inf], [-inf,inf], [-inf,inf], ignore=True)
        -1.74756459463318
        >>> nsum(lambda x,y: -12*pi*sech(0.5*pi * \
        ...     sqrt((2*x+1)**2+(2*y+1)**2))**2, [0,inf], [0,inf])
        -1.74756459463318

    Another example of a lattice sum in 2D::

        >>> nsum(lambda x,y: (-1)**(x+y) / (x**2+y**2), [-inf,inf],
        ...     [-inf,inf], ignore=True)
        -2.1775860903036
        >>> -pi*ln2
        -2.1775860903036

    An example of an Eisenstein series::

        >>> nsum(lambda m,n: (m+n*1j)**(-4), [-inf,inf], [-inf,inf],
        ...     ignore=True)
        (3.1512120021539 + 0.0j)

    **References**

    1. [Weisstein]_ http://mathworld.wolfram.com/DoubleSeries.html,
    2. [Weisstein]_ http://mathworld.wolfram.com/MadelungConstants.html

    """
    infinite, g = standardize(ctx, f, intervals, options)
    if not infinite:
        return +g()

    def update(partial_sums, indices):
        if partial_sums:
            psum = partial_sums[-1]
        else:
            psum = ctx.zero
        for k in indices:
            psum = psum + g(ctx.mpf(k))
            partial_sums.append(psum)

    prec = ctx.prec

    def emfun(point, tol):
        workprec = ctx.prec
        ctx.prec = prec + 10
        v = ctx.sumem(g, [point, ctx.inf], tol, error=1)
        ctx.prec = workprec
        return v

    return +ctx.adaptive_extrapolation(update, emfun, options)


def wrapsafe(f):
    def g(*args):
        try:
            return f(*args)
        except (ArithmeticError, ValueError):
            return 0
    return g

def standardize(ctx, f, intervals, options):
    if options.get("ignore"):
        f = wrapsafe(f)
    finite = []
    infinite = []
    for k, points in enumerate(intervals):
        a, b = ctx._as_points(points)
        if b < a:
            return False, (lambda: ctx.zero)
        if a == ctx.ninf or b == ctx.inf:
            infinite.append((k, (a,b)))
        else:
            finite.append((k, (int(a), int(b))))
    if finite:
        f = fold_finite(ctx, f, finite)
        if not infinite:
            return False, lambda: f(*([0]*len(intervals)))
    if infinite:
        f = standardize_infinite(ctx, f, infinite)
        f = fold_infinite(ctx, f, infinite)
        args = [0] * len(intervals)
        d = infinite[0][0]
        def g(k):
            args[d] = k
            return f(*args)
        return True, g

# backwards compatible itertools.product
def cartesian_product(args):
    pools = map(tuple, args)
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

def fold_finite(ctx, f, intervals):
    if not intervals:
        return f
    indices = [v[0] for v in intervals]
    points = [v[1] for v in intervals]
    ranges = [xrange(a, b+1) for (a,b) in points]
    def g(*args):
        args = list(args)
        s = ctx.zero
        for xs in cartesian_product(ranges):
            for dim, x in zip(indices, xs):
                args[dim] = ctx.mpf(x)
            s += f(*args)
        return s
    #print "Folded finite", indices
    return g

# Standardize each interval to [0,inf]
def standardize_infinite(ctx, f, intervals):
    if not intervals:
        return f
    dim, [a,b] = intervals[-1]
    if a == ctx.ninf:
        if b == ctx.inf:
            def g(*args):
                args = list(args)
                k = args[dim]
                if k:
                    s = f(*args)
                    args[dim] = -k
                    s += f(*args)
                    return s
                else:
                    return f(*args)
        else:
            def g(*args):
                args = list(args)
                args[dim] = b - args[dim]
                return f(*args)
    else:
        def g(*args):
            args = list(args)
            args[dim] += a
            return f(*args)
    #print "Standardized infinity along dimension", dim, a, b
    return standardize_infinite(ctx, g, intervals[:-1])

def fold_infinite(ctx, f, intervals):
    if len(intervals) < 2:
        return f
    dim1 = intervals[-2][0]
    dim2 = intervals[-1][0]
    # Assume intervals are [0,inf] x [0,inf] x ...
    def g(*args):
        args = list(args)
        #args.insert(dim2, None)
        n = int(args[dim1])
        s = ctx.zero
        #y = ctx.mpf(n)
        args[dim2] = ctx.mpf(n) #y
        for x in xrange(n+1):
            args[dim1] = ctx.mpf(x)
            s += f(*args)
        args[dim1] = ctx.mpf(n) #ctx.mpf(n)
        for y in xrange(n):
            args[dim2] = ctx.mpf(y)
            s += f(*args)
        return s
    #print "Folded infinite from", len(intervals), "to", (len(intervals)-1)
    return fold_infinite(ctx, g, intervals[:-1])

@defun
def nprod(ctx, f, interval, nsum=False, **kwargs):
    r"""
    Computes the product

    .. math ::

        P = \prod_{k=a}^b f(k)

    where `(a, b)` = *interval*, and where `a = -\infty` and/or
    `b = \infty` are allowed.

    By default, :func:`~mpmath.nprod` uses the same extrapolation methods as
    :func:`~mpmath.nsum`, except applied to the partial products rather than
    partial sums, and the same keyword options as for :func:`~mpmath.nsum` are
    supported. If ``nsum=True``, the product is instead computed via
    :func:`~mpmath.nsum` as

    .. math ::

        P = \exp\left( \sum_{k=a}^b \log(f(k)) \right).

    This is slower, but can sometimes yield better results. It is
    also required (and used automatically) when Euler-Maclaurin
    summation is requested.

    **Examples**

    A simple finite product::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> nprod(lambda k: k, [1, 4])
        24.0

    A large number of infinite products have known exact values,
    and can therefore be used as a reference. Most of the following
    examples are taken from MathWorld [1].

    A few infinite products with simple values are::

        >>> 2*nprod(lambda k: (4*k**2)/(4*k**2-1), [1, inf])
        3.141592653589793238462643
        >>> nprod(lambda k: (1+1/k)**2/(1+2/k), [1, inf])
        2.0
        >>> nprod(lambda k: (k**3-1)/(k**3+1), [2, inf])
        0.6666666666666666666666667
        >>> nprod(lambda k: (1-1/k**2), [2, inf])
        0.5

    Next, several more infinite products with more complicated
    values::

        >>> nprod(lambda k: exp(1/k**2), [1, inf]); exp(pi**2/6)
        5.180668317897115748416626
        5.180668317897115748416626

        >>> nprod(lambda k: (k**2-1)/(k**2+1), [2, inf]); pi*csch(pi)
        0.2720290549821331629502366
        0.2720290549821331629502366

        >>> nprod(lambda k: (k**4-1)/(k**4+1), [2, inf])
        0.8480540493529003921296502
        >>> pi*sinh(pi)/(cosh(sqrt(2)*pi)-cos(sqrt(2)*pi))
        0.8480540493529003921296502

        >>> nprod(lambda k: (1+1/k+1/k**2)**2/(1+2/k+3/k**2), [1, inf])
        1.848936182858244485224927
        >>> 3*sqrt(2)*cosh(pi*sqrt(3)/2)**2*csch(pi*sqrt(2))/pi
        1.848936182858244485224927

        >>> nprod(lambda k: (1-1/k**4), [2, inf]); sinh(pi)/(4*pi)
        0.9190194775937444301739244
        0.9190194775937444301739244

        >>> nprod(lambda k: (1-1/k**6), [2, inf])
        0.9826842777421925183244759
        >>> (1+cosh(pi*sqrt(3)))/(12*pi**2)
        0.9826842777421925183244759

        >>> nprod(lambda k: (1+1/k**2), [2, inf]); sinh(pi)/(2*pi)
        1.838038955187488860347849
        1.838038955187488860347849

        >>> nprod(lambda n: (1+1/n)**n * exp(1/(2*n)-1), [1, inf])
        1.447255926890365298959138
        >>> exp(1+euler/2)/sqrt(2*pi)
        1.447255926890365298959138

    The following two products are equivalent and can be evaluated in
    terms of a Jacobi theta function. Pi can be replaced by any value
    (as long as convergence is preserved)::

        >>> nprod(lambda k: (1-pi**-k)/(1+pi**-k), [1, inf])
        0.3838451207481672404778686
        >>> nprod(lambda k: tanh(k*log(pi)/2), [1, inf])
        0.3838451207481672404778686
        >>> jtheta(4,0,1/pi)
        0.3838451207481672404778686

    This product does not have a known closed form value::

        >>> nprod(lambda k: (1-1/2**k), [1, inf])
        0.2887880950866024212788997

    A product taken from `-\infty`::

        >>> nprod(lambda k: 1-k**(-3), [-inf,-2])
        0.8093965973662901095786805
        >>> cosh(pi*sqrt(3)/2)/(3*pi)
        0.8093965973662901095786805

    A doubly infinite product::

        >>> nprod(lambda k: exp(1/(1+k**2)), [-inf, inf])
        23.41432688231864337420035
        >>> exp(pi/tanh(pi))
        23.41432688231864337420035

    A product requiring the use of Euler-Maclaurin summation to compute
    an accurate value::

        >>> nprod(lambda k: (1-1/k**2.5), [2, inf], method='e')
        0.696155111336231052898125

    **References**

    1. [Weisstein]_ http://mathworld.wolfram.com/InfiniteProduct.html

    """
    if nsum or ('e' in kwargs.get('method', '')):
        orig = ctx.prec
        try:
            # TODO: we are evaluating log(1+eps) -> eps, which is
            # inaccurate. This currently works because nsum greatly
            # increases the working precision. But we should be
            # more intelligent and handle the precision here.
            ctx.prec += 10
            v = ctx.nsum(lambda n: ctx.ln(f(n)), interval, **kwargs)
        finally:
            ctx.prec = orig
        return +ctx.exp(v)

    a, b = ctx._as_points(interval)
    if a == ctx.ninf:
        if b == ctx.inf:
            return f(0) * ctx.nprod(lambda k: f(-k) * f(k), [1, ctx.inf], **kwargs)
        return ctx.nprod(f, [-b, ctx.inf], **kwargs)
    elif b != ctx.inf:
        return ctx.fprod(f(ctx.mpf(k)) for k in xrange(int(a), int(b)+1))

    a = int(a)

    def update(partial_products, indices):
        if partial_products:
            pprod = partial_products[-1]
        else:
            pprod = ctx.one
        for k in indices:
            pprod = pprod * f(a + ctx.mpf(k))
            partial_products.append(pprod)

    return +ctx.adaptive_extrapolation(update, None, kwargs)


@defun
def limit(ctx, f, x, direction=1, exp=False, **kwargs):
    r"""
    Computes an estimate of the limit

    .. math ::

        \lim_{t \to x} f(t)

    where `x` may be finite or infinite.

    For finite `x`, :func:`~mpmath.limit` evaluates `f(x + d/n)` for
    consecutive integer values of `n`, where the approach direction
    `d` may be specified using the *direction* keyword argument.
    For infinite `x`, :func:`~mpmath.limit` evaluates values of
    `f(\mathrm{sign}(x) \cdot n)`.

    If the approach to the limit is not sufficiently fast to give
    an accurate estimate directly, :func:`~mpmath.limit` attempts to find
    the limit using Richardson extrapolation or the Shanks
    transformation. You can select between these methods using
    the *method* keyword (see documentation of :func:`~mpmath.nsum` for
    more information).

    **Options**

    The following options are available with essentially the
    same meaning as for :func:`~mpmath.nsum`: *tol*, *method*, *maxterms*,
    *steps*, *verbose*.

    If the option *exp=True* is set, `f` will be
    sampled at exponentially spaced points `n = 2^1, 2^2, 2^3, \ldots`
    instead of the linearly spaced points `n = 1, 2, 3, \ldots`.
    This can sometimes improve the rate of convergence so that
    :func:`~mpmath.limit` may return a more accurate answer (and faster).
    However, do note that this can only be used if `f`
    supports fast and accurate evaluation for arguments that
    are extremely close to the limit point (or if infinite,
    very large arguments).

    **Examples**

    A basic evaluation of a removable singularity::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> limit(lambda x: (x-sin(x))/x**3, 0)
        0.166666666666666666666666666667

    Computing the exponential function using its limit definition::

        >>> limit(lambda n: (1+3/n)**n, inf)
        20.0855369231876677409285296546
        >>> exp(3)
        20.0855369231876677409285296546

    A limit for `\pi`::

        >>> f = lambda n: 2**(4*n+1)*fac(n)**4/(2*n+1)/fac(2*n)**2
        >>> limit(f, inf)
        3.14159265358979323846264338328

    Calculating the coefficient in Stirling's formula::

        >>> limit(lambda n: fac(n) / (sqrt(n)*(n/e)**n), inf)
        2.50662827463100050241576528481
        >>> sqrt(2*pi)
        2.50662827463100050241576528481

    Evaluating Euler's constant `\gamma` using the limit representation

    .. math ::

        \gamma = \lim_{n \rightarrow \infty } \left[ \left(
        \sum_{k=1}^n \frac{1}{k} \right) - \log(n) \right]

    (which converges notoriously slowly)::

        >>> f = lambda n: sum([mpf(1)/k for k in range(1,int(n)+1)]) - log(n)
        >>> limit(f, inf)
        0.577215664901532860606512090082
        >>> +euler
        0.577215664901532860606512090082

    With default settings, the following limit converges too slowly
    to be evaluated accurately. Changing to exponential sampling
    however gives a perfect result::

        >>> f = lambda x: sqrt(x**3+x**2)/(sqrt(x**3)+x)
        >>> limit(f, inf)
        0.992831158558330281129249686491
        >>> limit(f, inf, exp=True)
        1.0

    """

    if ctx.isinf(x):
        direction = ctx.sign(x)
        g = lambda k: f(ctx.mpf(k+1)*direction)
    else:
        direction *= ctx.one
        g = lambda k: f(x + direction/(k+1))
    if exp:
        h = g
        g = lambda k: h(2**k)

    def update(values, indices):
        for k in indices:
            values.append(g(k+1))

    # XXX: steps used by nsum don't work well
    if not 'steps' in kwargs:
        kwargs['steps'] = [10]

    return +ctx.adaptive_extrapolation(update, None, kwargs)