Spaces:
Running
Running
File size: 73,306 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 |
try:
from itertools import izip
except ImportError:
izip = zip
from ..libmp.backend import xrange
from .calculus import defun
try:
next = next
except NameError:
next = lambda _: _.next()
@defun
def richardson(ctx, seq):
r"""
Given a list ``seq`` of the first `N` elements of a slowly convergent
infinite sequence, :func:`~mpmath.richardson` computes the `N`-term
Richardson extrapolate for the limit.
:func:`~mpmath.richardson` returns `(v, c)` where `v` is the estimated
limit and `c` is the magnitude of the largest weight used during the
computation. The weight provides an estimate of the precision
lost to cancellation. Due to cancellation effects, the sequence must
be typically be computed at a much higher precision than the target
accuracy of the extrapolation.
**Applicability and issues**
The `N`-step Richardson extrapolation algorithm used by
:func:`~mpmath.richardson` is described in [1].
Richardson extrapolation only works for a specific type of sequence,
namely one converging like partial sums of
`P(1)/Q(1) + P(2)/Q(2) + \ldots` where `P` and `Q` are polynomials.
When the sequence does not convergence at such a rate
:func:`~mpmath.richardson` generally produces garbage.
Richardson extrapolation has the advantage of being fast: the `N`-term
extrapolate requires only `O(N)` arithmetic operations, and usually
produces an estimate that is accurate to `O(N)` digits. Contrast with
the Shanks transformation (see :func:`~mpmath.shanks`), which requires
`O(N^2)` operations.
:func:`~mpmath.richardson` is unable to produce an estimate for the
approximation error. One way to estimate the error is to perform
two extrapolations with slightly different `N` and comparing the
results.
Richardson extrapolation does not work for oscillating sequences.
As a simple workaround, :func:`~mpmath.richardson` detects if the last
three elements do not differ monotonically, and in that case
applies extrapolation only to the even-index elements.
**Example**
Applying Richardson extrapolation to the Leibniz series for `\pi`::
>>> from mpmath import *
>>> mp.dps = 30; mp.pretty = True
>>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
... for m in range(1,30)]
>>> v, c = richardson(S[:10])
>>> v
3.2126984126984126984126984127
>>> nprint([v-pi, c])
[0.0711058, 2.0]
>>> v, c = richardson(S[:30])
>>> v
3.14159265468624052829954206226
>>> nprint([v-pi, c])
[1.09645e-9, 20833.3]
**References**
1. [BenderOrszag]_ pp. 375-376
"""
if len(seq) < 3:
raise ValueError("seq should be of minimum length 3")
if ctx.sign(seq[-1]-seq[-2]) != ctx.sign(seq[-2]-seq[-3]):
seq = seq[::2]
N = len(seq)//2-1
s = ctx.zero
# The general weight is c[k] = (N+k)**N * (-1)**(k+N) / k! / (N-k)!
# To avoid repeated factorials, we simplify the quotient
# of successive weights to obtain a recurrence relation
c = (-1)**N * N**N / ctx.mpf(ctx._ifac(N))
maxc = 1
for k in xrange(N+1):
s += c * seq[N+k]
maxc = max(abs(c), maxc)
c *= (k-N)*ctx.mpf(k+N+1)**N
c /= ((1+k)*ctx.mpf(k+N)**N)
return s, maxc
@defun
def shanks(ctx, seq, table=None, randomized=False):
r"""
Given a list ``seq`` of the first `N` elements of a slowly
convergent infinite sequence `(A_k)`, :func:`~mpmath.shanks` computes the iterated
Shanks transformation `S(A), S(S(A)), \ldots, S^{N/2}(A)`. The Shanks
transformation often provides strong convergence acceleration,
especially if the sequence is oscillating.
The iterated Shanks transformation is computed using the Wynn
epsilon algorithm (see [1]). :func:`~mpmath.shanks` returns the full
epsilon table generated by Wynn's algorithm, which can be read
off as follows:
* The table is a list of lists forming a lower triangular matrix,
where higher row and column indices correspond to more accurate
values.
* The columns with even index hold dummy entries (required for the
computation) and the columns with odd index hold the actual
extrapolates.
* The last element in the last row is typically the most
accurate estimate of the limit.
* The difference to the third last element in the last row
provides an estimate of the approximation error.
* The magnitude of the second last element provides an estimate
of the numerical accuracy lost to cancellation.
For convenience, so the extrapolation is stopped at an odd index
so that ``shanks(seq)[-1][-1]`` always gives an estimate of the
limit.
Optionally, an existing table can be passed to :func:`~mpmath.shanks`.
This can be used to efficiently extend a previous computation after
new elements have been appended to the sequence. The table will
then be updated in-place.
**The Shanks transformation**
The Shanks transformation is defined as follows (see [2]): given
the input sequence `(A_0, A_1, \ldots)`, the transformed sequence is
given by
.. math ::
S(A_k) = \frac{A_{k+1}A_{k-1}-A_k^2}{A_{k+1}+A_{k-1}-2 A_k}
The Shanks transformation gives the exact limit `A_{\infty}` in a
single step if `A_k = A + a q^k`. Note in particular that it
extrapolates the exact sum of a geometric series in a single step.
Applying the Shanks transformation once often improves convergence
substantially for an arbitrary sequence, but the optimal effect is
obtained by applying it iteratively:
`S(S(A_k)), S(S(S(A_k))), \ldots`.
Wynn's epsilon algorithm provides an efficient way to generate
the table of iterated Shanks transformations. It reduces the
computation of each element to essentially a single division, at
the cost of requiring dummy elements in the table. See [1] for
details.
**Precision issues**
Due to cancellation effects, the sequence must be typically be
computed at a much higher precision than the target accuracy
of the extrapolation.
If the Shanks transformation converges to the exact limit (such
as if the sequence is a geometric series), then a division by
zero occurs. By default, :func:`~mpmath.shanks` handles this case by
terminating the iteration and returning the table it has
generated so far. With *randomized=True*, it will instead
replace the zero by a pseudorandom number close to zero.
(TODO: find a better solution to this problem.)
**Examples**
We illustrate by applying Shanks transformation to the Leibniz
series for `\pi`::
>>> from mpmath import *
>>> mp.dps = 50
>>> S = [4*sum(mpf(-1)**n/(2*n+1) for n in range(m))
... for m in range(1,30)]
>>>
>>> T = shanks(S[:7])
>>> for row in T:
... nprint(row)
...
[-0.75]
[1.25, 3.16667]
[-1.75, 3.13333, -28.75]
[2.25, 3.14524, 82.25, 3.14234]
[-2.75, 3.13968, -177.75, 3.14139, -969.937]
[3.25, 3.14271, 327.25, 3.14166, 3515.06, 3.14161]
The extrapolated accuracy is about 4 digits, and about 4 digits
may have been lost due to cancellation::
>>> L = T[-1]
>>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
[2.22532e-5, 4.78309e-5, 3515.06]
Now we extend the computation::
>>> T = shanks(S[:25], T)
>>> L = T[-1]
>>> nprint([abs(L[-1] - pi), abs(L[-1] - L[-3]), abs(L[-2])])
[3.75527e-19, 1.48478e-19, 2.96014e+17]
The value for pi is now accurate to 18 digits. About 18 digits may
also have been lost to cancellation.
Here is an example with a geometric series, where the convergence
is immediate (the sum is exactly 1)::
>>> mp.dps = 15
>>> for row in shanks([0.5, 0.75, 0.875, 0.9375, 0.96875]):
... nprint(row)
[4.0]
[8.0, 1.0]
**References**
1. [GravesMorris]_
2. [BenderOrszag]_ pp. 368-375
"""
if len(seq) < 2:
raise ValueError("seq should be of minimum length 2")
if table:
START = len(table)
else:
START = 0
table = []
STOP = len(seq) - 1
if STOP & 1:
STOP -= 1
one = ctx.one
eps = +ctx.eps
if randomized:
from random import Random
rnd = Random()
rnd.seed(START)
for i in xrange(START, STOP):
row = []
for j in xrange(i+1):
if j == 0:
a, b = 0, seq[i+1]-seq[i]
else:
if j == 1:
a = seq[i]
else:
a = table[i-1][j-2]
b = row[j-1] - table[i-1][j-1]
if not b:
if randomized:
b = (1 + rnd.getrandbits(10))*eps
elif i & 1:
return table[:-1]
else:
return table
row.append(a + one/b)
table.append(row)
return table
class levin_class:
# levin: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
r"""
This interface implements Levin's (nonlinear) sequence transformation for
convergence acceleration and summation of divergent series. It performs
better than the Shanks/Wynn-epsilon algorithm for logarithmic convergent
or alternating divergent series.
Let *A* be the series we want to sum:
.. math ::
A = \sum_{k=0}^{\infty} a_k
Attention: all `a_k` must be non-zero!
Let `s_n` be the partial sums of this series:
.. math ::
s_n = \sum_{k=0}^n a_k.
**Methods**
Calling ``levin`` returns an object with the following methods.
``update(...)`` works with the list of individual terms `a_k` of *A*, and
``update_step(...)`` works with the list of partial sums `s_k` of *A*:
.. code ::
v, e = ...update([a_0, a_1,..., a_k])
v, e = ...update_psum([s_0, s_1,..., s_k])
``step(...)`` works with the individual terms `a_k` and ``step_psum(...)``
works with the partial sums `s_k`:
.. code ::
v, e = ...step(a_k)
v, e = ...step_psum(s_k)
*v* is the current estimate for *A*, and *e* is an error estimate which is
simply the difference between the current estimate and the last estimate.
One should not mix ``update``, ``update_psum``, ``step`` and ``step_psum``.
**A word of caution**
One can only hope for good results (i.e. convergence acceleration or
resummation) if the `s_n` have some well defind asymptotic behavior for
large `n` and are not erratic or random. Furthermore one usually needs very
high working precision because of the numerical cancellation. If the working
precision is insufficient, levin may produce silently numerical garbage.
Furthermore even if the Levin-transformation converges, in the general case
there is no proof that the result is mathematically sound. Only for very
special classes of problems one can prove that the Levin-transformation
converges to the expected result (for example Stieltjes-type integrals).
Furthermore the Levin-transform is quite expensive (i.e. slow) in comparison
to Shanks/Wynn-epsilon, Richardson & co.
In summary one can say that the Levin-transformation is powerful but
unreliable and that it may need a copious amount of working precision.
The Levin transform has several variants differing in the choice of weights.
Some variants are better suited for the possible flavours of convergence
behaviour of *A* than other variants:
.. code ::
convergence behaviour levin-u levin-t levin-v shanks/wynn-epsilon
logarithmic + - + -
linear + + + +
alternating divergent + + + +
"+" means the variant is suitable,"-" means the variant is not suitable;
for comparison the Shanks/Wynn-epsilon transform is listed, too.
The variant is controlled though the variant keyword (i.e. ``variant="u"``,
``variant="t"`` or ``variant="v"``). Overall "u" is probably the best choice.
Finally it is possible to use the Sidi-S transform instead of the Levin transform
by using the keyword ``method='sidi'``. The Sidi-S transform works better than the
Levin transformation for some divergent series (see the examples).
Parameters:
.. code ::
method "levin" or "sidi" chooses either the Levin or the Sidi-S transformation
variant "u","t" or "v" chooses the weight variant.
The Levin transform is also accessible through the nsum interface.
``method="l"`` or ``method="levin"`` select the normal Levin transform while
``method="sidi"``
selects the Sidi-S transform. The variant is in both cases selected through the
levin_variant keyword. The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise
it will miss the point where the Levin transform converges resulting in numerical
overflow/garbage. For highly divergent series a copious amount of working precision
must be chosen.
**Examples**
First we sum the zeta function::
>>> from mpmath import mp
>>> mp.prec = 53
>>> eps = mp.mpf(mp.eps)
>>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
... L = mp.levin(method = "levin", variant = "u")
... S, s, n = [], 0, 1
... while 1:
... s += mp.one / (n * n)
... n += 1
... S.append(s)
... v, e = L.update_psum(S)
... if e < eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> print(mp.chop(v - mp.pi ** 2 / 6))
0.0
>>> w = mp.nsum(lambda n: 1 / (n*n), [1, mp.inf], method = "levin", levin_variant = "u")
>>> print(mp.chop(v - w))
0.0
Now we sum the zeta function outside its range of convergence
(attention: This does not work at the negative integers!)::
>>> eps = mp.mpf(mp.eps)
>>> with mp.extraprec(2 * mp.prec): # levin needs a high working precision
... L = mp.levin(method = "levin", variant = "v")
... A, n = [], 1
... while 1:
... s = mp.mpf(n) ** (2 + 3j)
... n += 1
... A.append(s)
... v, e = L.update(A)
... if e < eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> print(mp.chop(v - mp.zeta(-2-3j)))
0.0
>>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
>>> print(mp.chop(v - w))
0.0
Now we sum the divergent asymptotic expansion of an integral related to the
exponential integral (see also [2] p.373). The Sidi-S transform works best here::
>>> z = mp.mpf(10)
>>> exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
>>> # exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
>>> eps = mp.mpf(mp.eps)
>>> with mp.extraprec(2 * mp.prec): # high working precisions are mandatory for divergent resummation
... L = mp.levin(method = "sidi", variant = "t")
... n = 0
... while 1:
... s = (-1)**n * mp.fac(n) * z ** (-n)
... v, e = L.step(s)
... n += 1
... if e < eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> print(mp.chop(v - exact))
0.0
>>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
>>> print(mp.chop(v - w))
0.0
Another highly divergent integral is also summable::
>>> z = mp.mpf(2)
>>> eps = mp.mpf(mp.eps)
>>> exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
>>> # exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
>>> with mp.extraprec(7 * mp.prec): # we need copious amount of precision to sum this highly divergent series
... L = mp.levin(method = "levin", variant = "t")
... n, s = 0, 0
... while 1:
... s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n))
... n += 1
... v, e = L.step_psum(s)
... if e < eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> print(mp.chop(v - exact))
0.0
>>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
... [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
>>> print(mp.chop(v - w))
0.0
These examples run with 15-20 decimal digits precision. For higher precision the
working precision must be raised.
**Examples for nsum**
Here we calculate Euler's constant as the constant term in the Laurent
expansion of `\zeta(s)` at `s=1`. This sum converges extremly slowly because of
the logarithmic convergence behaviour of the Dirichlet series for zeta::
>>> mp.dps = 30
>>> z = mp.mpf(10) ** (-10)
>>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z
>>> print(mp.chop(a - mp.euler, tol = 1e-10))
0.0
The Sidi-S transform performs excellently for the alternating series of `\log(2)`::
>>> a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi")
>>> print(mp.chop(a - mp.log(2)))
0.0
Hypergeometric series can also be summed outside their range of convergence.
The stepsize in :func:`~mpmath.nsum` must not be chosen too large, otherwise it will miss the
point where the Levin transform converges resulting in numerical overflow/garbage::
>>> z = 2 + 1j
>>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
>>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
>>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
>>> print(mp.chop(exact-v))
0.0
References:
[1] E.J. Weniger - "Nonlinear Sequence Transformations for the Acceleration of
Convergence and the Summation of Divergent Series" arXiv:math/0306302
[2] A. Sidi - "Pratical Extrapolation Methods"
[3] H.H.H. Homeier - "Scalar Levin-Type Sequence Transformations" arXiv:math/0005209
"""
def __init__(self, method = "levin", variant = "u"):
self.variant = variant
self.n = 0
self.a0 = 0
self.theta = 1
self.A = []
self.B = []
self.last = 0
self.last_s = False
if method == "levin":
self.factor = self.factor_levin
elif method == "sidi":
self.factor = self.factor_sidi
else:
raise ValueError("levin: unknown method \"%s\"" % method)
def factor_levin(self, i):
# original levin
# [1] p.50,e.7.5-7 (with n-j replaced by i)
return (self.theta + i) * (self.theta + self.n - 1) ** (self.n - i - 2) / self.ctx.mpf(self.theta + self.n) ** (self.n - i - 1)
def factor_sidi(self, i):
# sidi analogon to levin (factorial series)
# [1] p.59,e.8.3-16 (with n-j replaced by i)
return (self.theta + self.n - 1) * (self.theta + self.n - 2) / self.ctx.mpf((self.theta + 2 * self.n - i - 2) * (self.theta + 2 * self.n - i - 3))
def run(self, s, a0, a1 = 0):
if self.variant=="t":
# levin t
w=a0
elif self.variant=="u":
# levin u
w=a0*(self.theta+self.n)
elif self.variant=="v":
# levin v
w=a0*a1/(a0-a1)
else:
assert False, "unknown variant"
if w==0:
raise ValueError("levin: zero weight")
self.A.append(s/w)
self.B.append(1/w)
for i in range(self.n-1,-1,-1):
if i==self.n-1:
f=1
else:
f=self.factor(i)
self.A[i]=self.A[i+1]-f*self.A[i]
self.B[i]=self.B[i+1]-f*self.B[i]
self.n+=1
###########################################################################
def update_psum(self,S):
"""
This routine applies the convergence acceleration to the list of partial sums.
A = sum(a_k, k = 0..infinity)
s_n = sum(a_k, k = 0..n)
v, e = ...update_psum([s_0, s_1,..., s_k])
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
if self.variant!="v":
if self.n==0:
self.run(S[0],S[0])
while self.n<len(S):
self.run(S[self.n],S[self.n]-S[self.n-1])
else:
if len(S)==1:
self.last=0
return S[0],abs(S[0])
if self.n==0:
self.a1=S[1]-S[0]
self.run(S[0],S[0],self.a1)
while self.n<len(S)-1:
na1=S[self.n+1]-S[self.n]
self.run(S[self.n],self.a1,na1)
self.a1=na1
value=self.A[0]/self.B[0]
err=abs(value-self.last)
self.last=value
return value,err
def update(self,X):
"""
This routine applies the convergence acceleration to the list of individual terms.
A = sum(a_k, k = 0..infinity)
v, e = ...update([a_0, a_1,..., a_k])
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
if self.variant!="v":
if self.n==0:
self.s=X[0]
self.run(self.s,X[0])
while self.n<len(X):
self.s+=X[self.n]
self.run(self.s,X[self.n])
else:
if len(X)==1:
self.last=0
return X[0],abs(X[0])
if self.n==0:
self.s=X[0]
self.run(self.s,X[0],X[1])
while self.n<len(X)-1:
self.s+=X[self.n]
self.run(self.s,X[self.n],X[self.n+1])
value=self.A[0]/self.B[0]
err=abs(value-self.last)
self.last=value
return value,err
###########################################################################
def step_psum(self,s):
"""
This routine applies the convergence acceleration to the partial sums.
A = sum(a_k, k = 0..infinity)
s_n = sum(a_k, k = 0..n)
v, e = ...step_psum(s_k)
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
if self.variant!="v":
if self.n==0:
self.last_s=s
self.run(s,s)
else:
self.run(s,s-self.last_s)
self.last_s=s
else:
if isinstance(self.last_s,bool):
self.last_s=s
self.last_w=s
self.last=0
return s,abs(s)
na1=s-self.last_s
self.run(self.last_s,self.last_w,na1)
self.last_w=na1
self.last_s=s
value=self.A[0]/self.B[0]
err=abs(value-self.last)
self.last=value
return value,err
def step(self,x):
"""
This routine applies the convergence acceleration to the individual terms.
A = sum(a_k, k = 0..infinity)
v, e = ...step(a_k)
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
if self.variant!="v":
if self.n==0:
self.s=x
self.run(self.s,x)
else:
self.s+=x
self.run(self.s,x)
else:
if isinstance(self.last_s,bool):
self.last_s=x
self.s=0
self.last=0
return x,abs(x)
self.s+=self.last_s
self.run(self.s,self.last_s,x)
self.last_s=x
value=self.A[0]/self.B[0]
err=abs(value-self.last)
self.last=value
return value,err
def levin(ctx, method = "levin", variant = "u"):
L = levin_class(method = method, variant = variant)
L.ctx = ctx
return L
levin.__doc__ = levin_class.__doc__
defun(levin)
class cohen_alt_class:
# cohen_alt: Copyright 2013 Timo Hartmann (thartmann15 at gmail.com)
r"""
This interface implements the convergence acceleration of alternating series
as described in H. Cohen, F.R. Villegas, D. Zagier - "Convergence Acceleration
of Alternating Series". This series transformation works only well if the
individual terms of the series have an alternating sign. It belongs to the
class of linear series transformations (in contrast to the Shanks/Wynn-epsilon
or Levin transform). This series transformation is also able to sum some types
of divergent series. See the paper under which conditions this resummation is
mathematical sound.
Let *A* be the series we want to sum:
.. math ::
A = \sum_{k=0}^{\infty} a_k
Let `s_n` be the partial sums of this series:
.. math ::
s_n = \sum_{k=0}^n a_k.
**Interface**
Calling ``cohen_alt`` returns an object with the following methods.
Then ``update(...)`` works with the list of individual terms `a_k` and
``update_psum(...)`` works with the list of partial sums `s_k`:
.. code ::
v, e = ...update([a_0, a_1,..., a_k])
v, e = ...update_psum([s_0, s_1,..., s_k])
*v* is the current estimate for *A*, and *e* is an error estimate which is
simply the difference between the current estimate and the last estimate.
**Examples**
Here we compute the alternating zeta function using ``update_psum``::
>>> from mpmath import mp
>>> AC = mp.cohen_alt()
>>> S, s, n = [], 0, 1
>>> while 1:
... s += -((-1) ** n) * mp.one / (n * n)
... n += 1
... S.append(s)
... v, e = AC.update_psum(S)
... if e < mp.eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> print(mp.chop(v - mp.pi ** 2 / 12))
0.0
Here we compute the product `\prod_{n=1}^{\infty} \Gamma(1+1/(2n-1)) / \Gamma(1+1/(2n))`::
>>> A = []
>>> AC = mp.cohen_alt()
>>> n = 1
>>> while 1:
... A.append( mp.loggamma(1 + mp.one / (2 * n - 1)))
... A.append(-mp.loggamma(1 + mp.one / (2 * n)))
... n += 1
... v, e = AC.update(A)
... if e < mp.eps:
... break
... if n > 1000: raise RuntimeError("iteration limit exceeded")
>>> v = mp.exp(v)
>>> print(mp.chop(v - 1.06215090557106, tol = 1e-12))
0.0
``cohen_alt`` is also accessible through the :func:`~mpmath.nsum` interface::
>>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
>>> print(mp.chop(v - mp.log(2)))
0.0
>>> v = mp.nsum(lambda n: (-1)**n / (2 * n + 1), [0, mp.inf], method = "a")
>>> print(mp.chop(v - mp.pi / 4))
0.0
>>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
>>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
0.0
"""
def __init__(self):
self.last=0
def update(self, A):
"""
This routine applies the convergence acceleration to the list of individual terms.
A = sum(a_k, k = 0..infinity)
v, e = ...update([a_0, a_1,..., a_k])
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
n = len(A)
d = (3 + self.ctx.sqrt(8)) ** n
d = (d + 1 / d) / 2
b = -self.ctx.one
c = -d
s = 0
for k in xrange(n):
c = b - c
if k % 2 == 0:
s = s + c * A[k]
else:
s = s - c * A[k]
b = 2 * (k + n) * (k - n) * b / ((2 * k + 1) * (k + self.ctx.one))
value = s / d
err = abs(value - self.last)
self.last = value
return value, err
def update_psum(self, S):
"""
This routine applies the convergence acceleration to the list of partial sums.
A = sum(a_k, k = 0..infinity)
s_n = sum(a_k ,k = 0..n)
v, e = ...update_psum([s_0, s_1,..., s_k])
output:
v current estimate of the series A
e an error estimate which is simply the difference between the current
estimate and the last estimate.
"""
n = len(S)
d = (3 + self.ctx.sqrt(8)) ** n
d = (d + 1 / d) / 2
b = self.ctx.one
s = 0
for k in xrange(n):
b = 2 * (n + k) * (n - k) * b / ((2 * k + 1) * (k + self.ctx.one))
s += b * S[k]
value = s / d
err = abs(value - self.last)
self.last = value
return value, err
def cohen_alt(ctx):
L = cohen_alt_class()
L.ctx = ctx
return L
cohen_alt.__doc__ = cohen_alt_class.__doc__
defun(cohen_alt)
@defun
def sumap(ctx, f, interval, integral=None, error=False):
r"""
Evaluates an infinite series of an analytic summand *f* using the
Abel-Plana formula
.. math ::
\sum_{k=0}^{\infty} f(k) = \int_0^{\infty} f(t) dt + \frac{1}{2} f(0) +
i \int_0^{\infty} \frac{f(it)-f(-it)}{e^{2\pi t}-1} dt.
Unlike the Euler-Maclaurin formula (see :func:`~mpmath.sumem`),
the Abel-Plana formula does not require derivatives. However,
it only works when `|f(it)-f(-it)|` does not
increase too rapidly with `t`.
**Examples**
The Abel-Plana formula is particularly useful when the summand
decreases like a power of `k`; for example when the sum is a pure
zeta function::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> sumap(lambda k: 1/k**2.5, [1,inf])
1.34148725725091717975677
>>> zeta(2.5)
1.34148725725091717975677
>>> sumap(lambda k: 1/(k+1j)**(2.5+2.5j), [1,inf])
(-3.385361068546473342286084 - 0.7432082105196321803869551j)
>>> zeta(2.5+2.5j, 1+1j)
(-3.385361068546473342286084 - 0.7432082105196321803869551j)
If the series is alternating, numerical quadrature along the real
line is likely to give poor results, so it is better to evaluate
the first term symbolically whenever possible:
>>> n=3; z=-0.75
>>> I = expint(n,-log(z))
>>> chop(sumap(lambda k: z**k / k**n, [1,inf], integral=I))
-0.6917036036904594510141448
>>> polylog(n,z)
-0.6917036036904594510141448
"""
prec = ctx.prec
try:
ctx.prec += 10
a, b = interval
if b != ctx.inf:
raise ValueError("b should be equal to ctx.inf")
g = lambda x: f(x+a)
if integral is None:
i1, err1 = ctx.quad(g, [0,ctx.inf], error=True)
else:
i1, err1 = integral, 0
j = ctx.j
p = ctx.pi * 2
if ctx._is_real_type(i1):
h = lambda t: -2 * ctx.im(g(j*t)) / ctx.expm1(p*t)
else:
h = lambda t: j*(g(j*t)-g(-j*t)) / ctx.expm1(p*t)
i2, err2 = ctx.quad(h, [0,ctx.inf], error=True)
err = err1+err2
v = i1+i2+0.5*g(ctx.mpf(0))
finally:
ctx.prec = prec
if error:
return +v, err
return +v
@defun
def sumem(ctx, f, interval, tol=None, reject=10, integral=None,
adiffs=None, bdiffs=None, verbose=False, error=False,
_fast_abort=False):
r"""
Uses the Euler-Maclaurin formula to compute an approximation accurate
to within ``tol`` (which defaults to the present epsilon) of the sum
.. math ::
S = \sum_{k=a}^b f(k)
where `(a,b)` are given by ``interval`` and `a` or `b` may be
infinite. The approximation is
.. math ::
S \sim \int_a^b f(x) \,dx + \frac{f(a)+f(b)}{2} +
\sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!}
\left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right).
The last sum in the Euler-Maclaurin formula is not generally
convergent (a notable exception is if `f` is a polynomial, in
which case Euler-Maclaurin actually gives an exact result).
The summation is stopped as soon as the quotient between two
consecutive terms falls below *reject*. That is, by default
(*reject* = 10), the summation is continued as long as each
term adds at least one decimal.
Although not convergent, convergence to a given tolerance can
often be "forced" if `b = \infty` by summing up to `a+N` and then
applying the Euler-Maclaurin formula to the sum over the range
`(a+N+1, \ldots, \infty)`. This procedure is implemented by
:func:`~mpmath.nsum`.
By default numerical quadrature and differentiation is used.
If the symbolic values of the integral and endpoint derivatives
are known, it is more efficient to pass the value of the
integral explicitly as ``integral`` and the derivatives
explicitly as ``adiffs`` and ``bdiffs``. The derivatives
should be given as iterables that yield
`f(a), f'(a), f''(a), \ldots` (and the equivalent for `b`).
**Examples**
Summation of an infinite series, with automatic and symbolic
integral and derivative values (the second should be much faster)::
>>> from mpmath import *
>>> mp.dps = 50; mp.pretty = True
>>> sumem(lambda n: 1/n**2, [32, inf])
0.03174336652030209012658168043874142714132886413417
>>> I = mpf(1)/32
>>> D = adiffs=((-1)**n*fac(n+1)*32**(-2-n) for n in range(999))
>>> sumem(lambda n: 1/n**2, [32, inf], integral=I, adiffs=D)
0.03174336652030209012658168043874142714132886413417
An exact evaluation of a finite polynomial sum::
>>> sumem(lambda n: n**5-12*n**2+3*n, [-100000, 200000])
10500155000624963999742499550000.0
>>> print(sum(n**5-12*n**2+3*n for n in range(-100000, 200001)))
10500155000624963999742499550000
"""
tol = tol or +ctx.eps
interval = ctx._as_points(interval)
a = ctx.convert(interval[0])
b = ctx.convert(interval[-1])
err = ctx.zero
prev = 0
M = 10000
if a == ctx.ninf: adiffs = (0 for n in xrange(M))
else: adiffs = adiffs or ctx.diffs(f, a)
if b == ctx.inf: bdiffs = (0 for n in xrange(M))
else: bdiffs = bdiffs or ctx.diffs(f, b)
orig = ctx.prec
#verbose = 1
try:
ctx.prec += 10
s = ctx.zero
for k, (da, db) in enumerate(izip(adiffs, bdiffs)):
if k & 1:
term = (db-da) * ctx.bernoulli(k+1) / ctx.factorial(k+1)
mag = abs(term)
if verbose:
print("term", k, "magnitude =", ctx.nstr(mag))
if k > 4 and mag < tol:
s += term
break
elif k > 4 and abs(prev) / mag < reject:
err += mag
if _fast_abort:
return [s, (s, err)][error]
if verbose:
print("Failed to converge")
break
else:
s += term
prev = term
# Endpoint correction
if a != ctx.ninf: s += f(a)/2
if b != ctx.inf: s += f(b)/2
# Tail integral
if verbose:
print("Integrating f(x) from x = %s to %s" % (ctx.nstr(a), ctx.nstr(b)))
if integral:
s += integral
else:
integral, ierr = ctx.quad(f, interval, error=True)
if verbose:
print("Integration error:", ierr)
s += integral
err += ierr
finally:
ctx.prec = orig
if error:
return s, err
else:
return s
@defun
def adaptive_extrapolation(ctx, update, emfun, kwargs):
option = kwargs.get
if ctx._fixed_precision:
tol = option('tol', ctx.eps*2**10)
else:
tol = option('tol', ctx.eps/2**10)
verbose = option('verbose', False)
maxterms = option('maxterms', ctx.dps*10)
method = set(option('method', 'r+s').split('+'))
skip = option('skip', 0)
steps = iter(option('steps', xrange(10, 10**9, 10)))
strict = option('strict')
#steps = (10 for i in xrange(1000))
summer=[]
if 'd' in method or 'direct' in method:
TRY_RICHARDSON = TRY_SHANKS = TRY_EULER_MACLAURIN = False
else:
TRY_RICHARDSON = ('r' in method) or ('richardson' in method)
TRY_SHANKS = ('s' in method) or ('shanks' in method)
TRY_EULER_MACLAURIN = ('e' in method) or \
('euler-maclaurin' in method)
def init_levin(m):
variant = kwargs.get("levin_variant", "u")
if isinstance(variant, str):
if variant == "all":
variant = ["u", "v", "t"]
else:
variant = [variant]
for s in variant:
L = levin_class(method = m, variant = s)
L.ctx = ctx
L.name = m + "(" + s + ")"
summer.append(L)
if ('l' in method) or ('levin' in method):
init_levin("levin")
if ('sidi' in method):
init_levin("sidi")
if ('a' in method) or ('alternating' in method):
L = cohen_alt_class()
L.ctx = ctx
L.name = "alternating"
summer.append(L)
last_richardson_value = 0
shanks_table = []
index = 0
step = 10
partial = []
best = ctx.zero
orig = ctx.prec
try:
if 'workprec' in kwargs:
ctx.prec = kwargs['workprec']
elif TRY_RICHARDSON or TRY_SHANKS or len(summer)!=0:
ctx.prec = (ctx.prec+10) * 4
else:
ctx.prec += 30
while 1:
if index >= maxterms:
break
# Get new batch of terms
try:
step = next(steps)
except StopIteration:
pass
if verbose:
print("-"*70)
print("Adding terms #%i-#%i" % (index, index+step))
update(partial, xrange(index, index+step))
index += step
# Check direct error
best = partial[-1]
error = abs(best - partial[-2])
if verbose:
print("Direct error: %s" % ctx.nstr(error))
if error <= tol:
return best
# Check each extrapolation method
if TRY_RICHARDSON:
value, maxc = ctx.richardson(partial)
# Convergence
richardson_error = abs(value - last_richardson_value)
if verbose:
print("Richardson error: %s" % ctx.nstr(richardson_error))
# Convergence
if richardson_error <= tol:
return value
last_richardson_value = value
# Unreliable due to cancellation
if ctx.eps*maxc > tol:
if verbose:
print("Ran out of precision for Richardson")
TRY_RICHARDSON = False
if richardson_error < error:
error = richardson_error
best = value
if TRY_SHANKS:
shanks_table = ctx.shanks(partial, shanks_table, randomized=True)
row = shanks_table[-1]
if len(row) == 2:
est1 = row[-1]
shanks_error = 0
else:
est1, maxc, est2 = row[-1], abs(row[-2]), row[-3]
shanks_error = abs(est1-est2)
if verbose:
print("Shanks error: %s" % ctx.nstr(shanks_error))
if shanks_error <= tol:
return est1
if ctx.eps*maxc > tol:
if verbose:
print("Ran out of precision for Shanks")
TRY_SHANKS = False
if shanks_error < error:
error = shanks_error
best = est1
for L in summer:
est, lerror = L.update_psum(partial)
if verbose:
print("%s error: %s" % (L.name, ctx.nstr(lerror)))
if lerror <= tol:
return est
if lerror < error:
error = lerror
best = est
if TRY_EULER_MACLAURIN:
if ctx.almosteq(ctx.mpc(ctx.sign(partial[-1]) / ctx.sign(partial[-2])), -1):
if verbose:
print ("NOT using Euler-Maclaurin: the series appears"
" to be alternating, so numerical\n quadrature"
" will most likely fail")
TRY_EULER_MACLAURIN = False
else:
value, em_error = emfun(index, tol)
value += partial[-1]
if verbose:
print("Euler-Maclaurin error: %s" % ctx.nstr(em_error))
if em_error <= tol:
return value
if em_error < error:
best = value
finally:
ctx.prec = orig
if strict:
raise ctx.NoConvergence
if verbose:
print("Warning: failed to converge to target accuracy")
return best
@defun
def nsum(ctx, f, *intervals, **options):
r"""
Computes the sum
.. math :: S = \sum_{k=a}^b f(k)
where `(a, b)` = *interval*, and where `a = -\infty` and/or
`b = \infty` are allowed, or more generally
.. math :: S = \sum_{k_1=a_1}^{b_1} \cdots
\sum_{k_n=a_n}^{b_n} f(k_1,\ldots,k_n)
if multiple intervals are given.
Two examples of infinite series that can be summed by :func:`~mpmath.nsum`,
where the first converges rapidly and the second converges slowly,
are::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = True
>>> nsum(lambda n: 1/fac(n), [0, inf])
2.71828182845905
>>> nsum(lambda n: 1/n**2, [1, inf])
1.64493406684823
When appropriate, :func:`~mpmath.nsum` applies convergence acceleration to
accurately estimate the sums of slowly convergent series. If the series is
finite, :func:`~mpmath.nsum` currently does not attempt to perform any
extrapolation, and simply calls :func:`~mpmath.fsum`.
Multidimensional infinite series are reduced to a single-dimensional
series over expanding hypercubes; if both infinite and finite dimensions
are present, the finite ranges are moved innermost. For more advanced
control over the summation order, use nested calls to :func:`~mpmath.nsum`,
or manually rewrite the sum as a single-dimensional series.
**Options**
*tol*
Desired maximum final error. Defaults roughly to the
epsilon of the working precision.
*method*
Which summation algorithm to use (described below).
Default: ``'richardson+shanks'``.
*maxterms*
Cancel after at most this many terms. Default: 10*dps.
*steps*
An iterable giving the number of terms to add between
each extrapolation attempt. The default sequence is
[10, 20, 30, 40, ...]. For example, if you know that
approximately 100 terms will be required, efficiency might be
improved by setting this to [100, 10]. Then the first
extrapolation will be performed after 100 terms, the second
after 110, etc.
*verbose*
Print details about progress.
*ignore*
If enabled, any term that raises ``ArithmeticError``
or ``ValueError`` (e.g. through division by zero) is replaced
by a zero. This is convenient for lattice sums with
a singular term near the origin.
**Methods**
Unfortunately, an algorithm that can efficiently sum any infinite
series does not exist. :func:`~mpmath.nsum` implements several different
algorithms that each work well in different cases. The *method*
keyword argument selects a method.
The default method is ``'r+s'``, i.e. both Richardson extrapolation
and Shanks transformation is attempted. A slower method that
handles more cases is ``'r+s+e'``. For very high precision
summation, or if the summation needs to be fast (for example if
multiple sums need to be evaluated), it is a good idea to
investigate which one method works best and only use that.
``'richardson'`` / ``'r'``:
Uses Richardson extrapolation. Provides useful extrapolation
when `f(k) \sim P(k)/Q(k)` or when `f(k) \sim (-1)^k P(k)/Q(k)`
for polynomials `P` and `Q`. See :func:`~mpmath.richardson` for
additional information.
``'shanks'`` / ``'s'``:
Uses Shanks transformation. Typically provides useful
extrapolation when `f(k) \sim c^k` or when successive terms
alternate signs. Is able to sum some divergent series.
See :func:`~mpmath.shanks` for additional information.
``'levin'`` / ``'l'``:
Uses the Levin transformation. It performs better than the Shanks
transformation for logarithmic convergent or alternating divergent
series. The ``'levin_variant'``-keyword selects the variant. Valid
choices are "u", "t", "v" and "all" whereby "all" uses all three
u,t and v simultanously (This is good for performance comparison in
conjunction with "verbose=True"). Instead of the Levin transform one can
also use the Sidi-S transform by selecting the method ``'sidi'``.
See :func:`~mpmath.levin` for additional details.
``'alternating'`` / ``'a'``:
This is the convergence acceleration of alternating series developped
by Cohen, Villegras and Zagier.
See :func:`~mpmath.cohen_alt` for additional details.
``'euler-maclaurin'`` / ``'e'``:
Uses the Euler-Maclaurin summation formula to approximate
the remainder sum by an integral. This requires high-order
numerical derivatives and numerical integration. The advantage
of this algorithm is that it works regardless of the
decay rate of `f`, as long as `f` is sufficiently smooth.
See :func:`~mpmath.sumem` for additional information.
``'direct'`` / ``'d'``:
Does not perform any extrapolation. This can be used
(and should only be used for) rapidly convergent series.
The summation automatically stops when the terms
decrease below the target tolerance.
**Basic examples**
A finite sum::
>>> nsum(lambda k: 1/k, [1, 6])
2.45
Summation of a series going to negative infinity and a doubly
infinite series::
>>> nsum(lambda k: 1/k**2, [-inf, -1])
1.64493406684823
>>> nsum(lambda k: 1/(1+k**2), [-inf, inf])
3.15334809493716
:func:`~mpmath.nsum` handles sums of complex numbers::
>>> nsum(lambda k: (0.5+0.25j)**k, [0, inf])
(1.6 + 0.8j)
The following sum converges very rapidly, so it is most
efficient to sum it by disabling convergence acceleration::
>>> mp.dps = 1000
>>> a = nsum(lambda k: -(-1)**k * k**2 / fac(2*k), [1, inf],
... method='direct')
>>> b = (cos(1)+sin(1))/4
>>> abs(a-b) < mpf('1e-998')
True
**Examples with Richardson extrapolation**
Richardson extrapolation works well for sums over rational
functions, as well as their alternating counterparts::
>>> mp.dps = 50
>>> nsum(lambda k: 1 / k**3, [1, inf],
... method='richardson')
1.2020569031595942853997381615114499907649862923405
>>> zeta(3)
1.2020569031595942853997381615114499907649862923405
>>> nsum(lambda n: (n + 3)/(n**3 + n**2), [1, inf],
... method='richardson')
2.9348022005446793094172454999380755676568497036204
>>> pi**2/2-2
2.9348022005446793094172454999380755676568497036204
>>> nsum(lambda k: (-1)**k / k**3, [1, inf],
... method='richardson')
-0.90154267736969571404980362113358749307373971925537
>>> -3*zeta(3)/4
-0.90154267736969571404980362113358749307373971925538
**Examples with Shanks transformation**
The Shanks transformation works well for geometric series
and typically provides excellent acceleration for Taylor
series near the border of their disk of convergence.
Here we apply it to a series for `\log(2)`, which can be
seen as the Taylor series for `\log(1+x)` with `x = 1`::
>>> nsum(lambda k: -(-1)**k/k, [1, inf],
... method='shanks')
0.69314718055994530941723212145817656807550013436025
>>> log(2)
0.69314718055994530941723212145817656807550013436025
Here we apply it to a slowly convergent geometric series::
>>> nsum(lambda k: mpf('0.995')**k, [0, inf],
... method='shanks')
200.0
Finally, Shanks' method works very well for alternating series
where `f(k) = (-1)^k g(k)`, and often does so regardless of
the exact decay rate of `g(k)`::
>>> mp.dps = 15
>>> nsum(lambda k: (-1)**(k+1) / k**1.5, [1, inf],
... method='shanks')
0.765147024625408
>>> (2-sqrt(2))*zeta(1.5)/2
0.765147024625408
The following slowly convergent alternating series has no known
closed-form value. Evaluating the sum a second time at higher
precision indicates that the value is probably correct::
>>> nsum(lambda k: (-1)**k / log(k), [2, inf],
... method='shanks')
0.924299897222939
>>> mp.dps = 30
>>> nsum(lambda k: (-1)**k / log(k), [2, inf],
... method='shanks')
0.92429989722293885595957018136
**Examples with Levin transformation**
The following example calculates Euler's constant as the constant term in
the Laurent expansion of zeta(s) at s=1. This sum converges extremly slow
because of the logarithmic convergence behaviour of the Dirichlet series
for zeta.
>>> mp.dps = 30
>>> z = mp.mpf(10) ** (-10)
>>> a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "levin") - 1 / z
>>> print(mp.chop(a - mp.euler, tol = 1e-10))
0.0
Now we sum the zeta function outside its range of convergence
(attention: This does not work at the negative integers!):
>>> mp.dps = 15
>>> w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v")
>>> print(mp.chop(w - mp.zeta(-2-3j)))
0.0
The next example resummates an asymptotic series expansion of an integral
related to the exponential integral.
>>> mp.dps = 15
>>> z = mp.mpf(10)
>>> # exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf])
>>> exact = z * mp.exp(z) * mp.expint(1,z) # this is the symbolic expression for the integral
>>> w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t")
>>> print(mp.chop(w - exact))
0.0
Following highly divergent asymptotic expansion needs some care. Firstly we
need copious amount of working precision. Secondly the stepsize must not be
chosen to large, otherwise nsum may miss the point where the Levin transform
converges and reach the point where only numerical garbage is produced due to
numerical cancellation.
>>> mp.dps = 15
>>> z = mp.mpf(2)
>>> # exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi)
>>> exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) # this is the symbolic expression for the integral
>>> w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)),
... [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)])
>>> print(mp.chop(w - exact))
0.0
The hypergeoemtric function can also be summed outside its range of convergence:
>>> mp.dps = 15
>>> z = 2 + 1j
>>> exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z)
>>> f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n))
>>> v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)])
>>> print(mp.chop(exact-v))
0.0
**Examples with Cohen's alternating series resummation**
The next example sums the alternating zeta function:
>>> v = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "a")
>>> print(mp.chop(v - mp.log(2)))
0.0
The derivate of the alternating zeta function outside its range of
convergence:
>>> v = mp.nsum(lambda n: (-1)**n * mp.log(n) * n, [1, mp.inf], method = "a")
>>> print(mp.chop(v - mp.diff(lambda s: mp.altzeta(s), -1)))
0.0
**Examples with Euler-Maclaurin summation**
The sum in the following example has the wrong rate of convergence
for either Richardson or Shanks to be effective.
>>> f = lambda k: log(k)/k**2.5
>>> mp.dps = 15
>>> nsum(f, [1, inf], method='euler-maclaurin')
0.38734195032621
>>> -diff(zeta, 2.5)
0.38734195032621
Increasing ``steps`` improves speed at higher precision::
>>> mp.dps = 50
>>> nsum(f, [1, inf], method='euler-maclaurin', steps=[250])
0.38734195032620997271199237593105101319948228874688
>>> -diff(zeta, 2.5)
0.38734195032620997271199237593105101319948228874688
**Divergent series**
The Shanks transformation is able to sum some *divergent*
series. In particular, it is often able to sum Taylor series
beyond their radius of convergence (this is due to a relation
between the Shanks transformation and Pade approximations;
see :func:`~mpmath.pade` for an alternative way to evaluate divergent
Taylor series). Furthermore the Levin-transform examples above
contain some divergent series resummation.
Here we apply it to `\log(1+x)` far outside the region of
convergence::
>>> mp.dps = 50
>>> nsum(lambda k: -(-9)**k/k, [1, inf],
... method='shanks')
2.3025850929940456840179914546843642076011014886288
>>> log(10)
2.3025850929940456840179914546843642076011014886288
A particular type of divergent series that can be summed
using the Shanks transformation is geometric series.
The result is the same as using the closed-form formula
for an infinite geometric series::
>>> mp.dps = 15
>>> for n in range(-8, 8):
... if n == 1:
... continue
... print("%s %s %s" % (mpf(n), mpf(1)/(1-n),
... nsum(lambda k: n**k, [0, inf], method='shanks')))
...
-8.0 0.111111111111111 0.111111111111111
-7.0 0.125 0.125
-6.0 0.142857142857143 0.142857142857143
-5.0 0.166666666666667 0.166666666666667
-4.0 0.2 0.2
-3.0 0.25 0.25
-2.0 0.333333333333333 0.333333333333333
-1.0 0.5 0.5
0.0 1.0 1.0
2.0 -1.0 -1.0
3.0 -0.5 -0.5
4.0 -0.333333333333333 -0.333333333333333
5.0 -0.25 -0.25
6.0 -0.2 -0.2
7.0 -0.166666666666667 -0.166666666666667
**Multidimensional sums**
Any combination of finite and infinite ranges is allowed for the
summation indices::
>>> mp.dps = 15
>>> nsum(lambda x,y: x+y, [2,3], [4,5])
28.0
>>> nsum(lambda x,y: x/2**y, [1,3], [1,inf])
6.0
>>> nsum(lambda x,y: y/2**x, [1,inf], [1,3])
6.0
>>> nsum(lambda x,y,z: z/(2**x*2**y), [1,inf], [1,inf], [3,4])
7.0
>>> nsum(lambda x,y,z: y/(2**x*2**z), [1,inf], [3,4], [1,inf])
7.0
>>> nsum(lambda x,y,z: x/(2**z*2**y), [3,4], [1,inf], [1,inf])
7.0
Some nice examples of double series with analytic solutions or
reductions to single-dimensional series (see [1])::
>>> nsum(lambda m, n: 1/2**(m*n), [1,inf], [1,inf])
1.60669515241529
>>> nsum(lambda n: 1/(2**n-1), [1,inf])
1.60669515241529
>>> nsum(lambda i,j: (-1)**(i+j)/(i**2+j**2), [1,inf], [1,inf])
0.278070510848213
>>> pi*(pi-3*ln2)/12
0.278070510848213
>>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**2, [1,inf], [1,inf])
0.129319852864168
>>> altzeta(2) - altzeta(1)
0.129319852864168
>>> nsum(lambda i,j: (-1)**(i+j)/(i+j)**3, [1,inf], [1,inf])
0.0790756439455825
>>> altzeta(3) - altzeta(2)
0.0790756439455825
>>> nsum(lambda m,n: m**2*n/(3**m*(n*3**m+m*3**n)),
... [1,inf], [1,inf])
0.28125
>>> mpf(9)/32
0.28125
>>> nsum(lambda i,j: fac(i-1)*fac(j-1)/fac(i+j),
... [1,inf], [1,inf], workprec=400)
1.64493406684823
>>> zeta(2)
1.64493406684823
A hard example of a multidimensional sum is the Madelung constant
in three dimensions (see [2]). The defining sum converges very
slowly and only conditionally, so :func:`~mpmath.nsum` is lucky to
obtain an accurate value through convergence acceleration. The
second evaluation below uses a much more efficient, rapidly
convergent 2D sum::
>>> nsum(lambda x,y,z: (-1)**(x+y+z)/(x*x+y*y+z*z)**0.5,
... [-inf,inf], [-inf,inf], [-inf,inf], ignore=True)
-1.74756459463318
>>> nsum(lambda x,y: -12*pi*sech(0.5*pi * \
... sqrt((2*x+1)**2+(2*y+1)**2))**2, [0,inf], [0,inf])
-1.74756459463318
Another example of a lattice sum in 2D::
>>> nsum(lambda x,y: (-1)**(x+y) / (x**2+y**2), [-inf,inf],
... [-inf,inf], ignore=True)
-2.1775860903036
>>> -pi*ln2
-2.1775860903036
An example of an Eisenstein series::
>>> nsum(lambda m,n: (m+n*1j)**(-4), [-inf,inf], [-inf,inf],
... ignore=True)
(3.1512120021539 + 0.0j)
**References**
1. [Weisstein]_ http://mathworld.wolfram.com/DoubleSeries.html,
2. [Weisstein]_ http://mathworld.wolfram.com/MadelungConstants.html
"""
infinite, g = standardize(ctx, f, intervals, options)
if not infinite:
return +g()
def update(partial_sums, indices):
if partial_sums:
psum = partial_sums[-1]
else:
psum = ctx.zero
for k in indices:
psum = psum + g(ctx.mpf(k))
partial_sums.append(psum)
prec = ctx.prec
def emfun(point, tol):
workprec = ctx.prec
ctx.prec = prec + 10
v = ctx.sumem(g, [point, ctx.inf], tol, error=1)
ctx.prec = workprec
return v
return +ctx.adaptive_extrapolation(update, emfun, options)
def wrapsafe(f):
def g(*args):
try:
return f(*args)
except (ArithmeticError, ValueError):
return 0
return g
def standardize(ctx, f, intervals, options):
if options.get("ignore"):
f = wrapsafe(f)
finite = []
infinite = []
for k, points in enumerate(intervals):
a, b = ctx._as_points(points)
if b < a:
return False, (lambda: ctx.zero)
if a == ctx.ninf or b == ctx.inf:
infinite.append((k, (a,b)))
else:
finite.append((k, (int(a), int(b))))
if finite:
f = fold_finite(ctx, f, finite)
if not infinite:
return False, lambda: f(*([0]*len(intervals)))
if infinite:
f = standardize_infinite(ctx, f, infinite)
f = fold_infinite(ctx, f, infinite)
args = [0] * len(intervals)
d = infinite[0][0]
def g(k):
args[d] = k
return f(*args)
return True, g
# backwards compatible itertools.product
def cartesian_product(args):
pools = map(tuple, args)
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
def fold_finite(ctx, f, intervals):
if not intervals:
return f
indices = [v[0] for v in intervals]
points = [v[1] for v in intervals]
ranges = [xrange(a, b+1) for (a,b) in points]
def g(*args):
args = list(args)
s = ctx.zero
for xs in cartesian_product(ranges):
for dim, x in zip(indices, xs):
args[dim] = ctx.mpf(x)
s += f(*args)
return s
#print "Folded finite", indices
return g
# Standardize each interval to [0,inf]
def standardize_infinite(ctx, f, intervals):
if not intervals:
return f
dim, [a,b] = intervals[-1]
if a == ctx.ninf:
if b == ctx.inf:
def g(*args):
args = list(args)
k = args[dim]
if k:
s = f(*args)
args[dim] = -k
s += f(*args)
return s
else:
return f(*args)
else:
def g(*args):
args = list(args)
args[dim] = b - args[dim]
return f(*args)
else:
def g(*args):
args = list(args)
args[dim] += a
return f(*args)
#print "Standardized infinity along dimension", dim, a, b
return standardize_infinite(ctx, g, intervals[:-1])
def fold_infinite(ctx, f, intervals):
if len(intervals) < 2:
return f
dim1 = intervals[-2][0]
dim2 = intervals[-1][0]
# Assume intervals are [0,inf] x [0,inf] x ...
def g(*args):
args = list(args)
#args.insert(dim2, None)
n = int(args[dim1])
s = ctx.zero
#y = ctx.mpf(n)
args[dim2] = ctx.mpf(n) #y
for x in xrange(n+1):
args[dim1] = ctx.mpf(x)
s += f(*args)
args[dim1] = ctx.mpf(n) #ctx.mpf(n)
for y in xrange(n):
args[dim2] = ctx.mpf(y)
s += f(*args)
return s
#print "Folded infinite from", len(intervals), "to", (len(intervals)-1)
return fold_infinite(ctx, g, intervals[:-1])
@defun
def nprod(ctx, f, interval, nsum=False, **kwargs):
r"""
Computes the product
.. math ::
P = \prod_{k=a}^b f(k)
where `(a, b)` = *interval*, and where `a = -\infty` and/or
`b = \infty` are allowed.
By default, :func:`~mpmath.nprod` uses the same extrapolation methods as
:func:`~mpmath.nsum`, except applied to the partial products rather than
partial sums, and the same keyword options as for :func:`~mpmath.nsum` are
supported. If ``nsum=True``, the product is instead computed via
:func:`~mpmath.nsum` as
.. math ::
P = \exp\left( \sum_{k=a}^b \log(f(k)) \right).
This is slower, but can sometimes yield better results. It is
also required (and used automatically) when Euler-Maclaurin
summation is requested.
**Examples**
A simple finite product::
>>> from mpmath import *
>>> mp.dps = 25; mp.pretty = True
>>> nprod(lambda k: k, [1, 4])
24.0
A large number of infinite products have known exact values,
and can therefore be used as a reference. Most of the following
examples are taken from MathWorld [1].
A few infinite products with simple values are::
>>> 2*nprod(lambda k: (4*k**2)/(4*k**2-1), [1, inf])
3.141592653589793238462643
>>> nprod(lambda k: (1+1/k)**2/(1+2/k), [1, inf])
2.0
>>> nprod(lambda k: (k**3-1)/(k**3+1), [2, inf])
0.6666666666666666666666667
>>> nprod(lambda k: (1-1/k**2), [2, inf])
0.5
Next, several more infinite products with more complicated
values::
>>> nprod(lambda k: exp(1/k**2), [1, inf]); exp(pi**2/6)
5.180668317897115748416626
5.180668317897115748416626
>>> nprod(lambda k: (k**2-1)/(k**2+1), [2, inf]); pi*csch(pi)
0.2720290549821331629502366
0.2720290549821331629502366
>>> nprod(lambda k: (k**4-1)/(k**4+1), [2, inf])
0.8480540493529003921296502
>>> pi*sinh(pi)/(cosh(sqrt(2)*pi)-cos(sqrt(2)*pi))
0.8480540493529003921296502
>>> nprod(lambda k: (1+1/k+1/k**2)**2/(1+2/k+3/k**2), [1, inf])
1.848936182858244485224927
>>> 3*sqrt(2)*cosh(pi*sqrt(3)/2)**2*csch(pi*sqrt(2))/pi
1.848936182858244485224927
>>> nprod(lambda k: (1-1/k**4), [2, inf]); sinh(pi)/(4*pi)
0.9190194775937444301739244
0.9190194775937444301739244
>>> nprod(lambda k: (1-1/k**6), [2, inf])
0.9826842777421925183244759
>>> (1+cosh(pi*sqrt(3)))/(12*pi**2)
0.9826842777421925183244759
>>> nprod(lambda k: (1+1/k**2), [2, inf]); sinh(pi)/(2*pi)
1.838038955187488860347849
1.838038955187488860347849
>>> nprod(lambda n: (1+1/n)**n * exp(1/(2*n)-1), [1, inf])
1.447255926890365298959138
>>> exp(1+euler/2)/sqrt(2*pi)
1.447255926890365298959138
The following two products are equivalent and can be evaluated in
terms of a Jacobi theta function. Pi can be replaced by any value
(as long as convergence is preserved)::
>>> nprod(lambda k: (1-pi**-k)/(1+pi**-k), [1, inf])
0.3838451207481672404778686
>>> nprod(lambda k: tanh(k*log(pi)/2), [1, inf])
0.3838451207481672404778686
>>> jtheta(4,0,1/pi)
0.3838451207481672404778686
This product does not have a known closed form value::
>>> nprod(lambda k: (1-1/2**k), [1, inf])
0.2887880950866024212788997
A product taken from `-\infty`::
>>> nprod(lambda k: 1-k**(-3), [-inf,-2])
0.8093965973662901095786805
>>> cosh(pi*sqrt(3)/2)/(3*pi)
0.8093965973662901095786805
A doubly infinite product::
>>> nprod(lambda k: exp(1/(1+k**2)), [-inf, inf])
23.41432688231864337420035
>>> exp(pi/tanh(pi))
23.41432688231864337420035
A product requiring the use of Euler-Maclaurin summation to compute
an accurate value::
>>> nprod(lambda k: (1-1/k**2.5), [2, inf], method='e')
0.696155111336231052898125
**References**
1. [Weisstein]_ http://mathworld.wolfram.com/InfiniteProduct.html
"""
if nsum or ('e' in kwargs.get('method', '')):
orig = ctx.prec
try:
# TODO: we are evaluating log(1+eps) -> eps, which is
# inaccurate. This currently works because nsum greatly
# increases the working precision. But we should be
# more intelligent and handle the precision here.
ctx.prec += 10
v = ctx.nsum(lambda n: ctx.ln(f(n)), interval, **kwargs)
finally:
ctx.prec = orig
return +ctx.exp(v)
a, b = ctx._as_points(interval)
if a == ctx.ninf:
if b == ctx.inf:
return f(0) * ctx.nprod(lambda k: f(-k) * f(k), [1, ctx.inf], **kwargs)
return ctx.nprod(f, [-b, ctx.inf], **kwargs)
elif b != ctx.inf:
return ctx.fprod(f(ctx.mpf(k)) for k in xrange(int(a), int(b)+1))
a = int(a)
def update(partial_products, indices):
if partial_products:
pprod = partial_products[-1]
else:
pprod = ctx.one
for k in indices:
pprod = pprod * f(a + ctx.mpf(k))
partial_products.append(pprod)
return +ctx.adaptive_extrapolation(update, None, kwargs)
@defun
def limit(ctx, f, x, direction=1, exp=False, **kwargs):
r"""
Computes an estimate of the limit
.. math ::
\lim_{t \to x} f(t)
where `x` may be finite or infinite.
For finite `x`, :func:`~mpmath.limit` evaluates `f(x + d/n)` for
consecutive integer values of `n`, where the approach direction
`d` may be specified using the *direction* keyword argument.
For infinite `x`, :func:`~mpmath.limit` evaluates values of
`f(\mathrm{sign}(x) \cdot n)`.
If the approach to the limit is not sufficiently fast to give
an accurate estimate directly, :func:`~mpmath.limit` attempts to find
the limit using Richardson extrapolation or the Shanks
transformation. You can select between these methods using
the *method* keyword (see documentation of :func:`~mpmath.nsum` for
more information).
**Options**
The following options are available with essentially the
same meaning as for :func:`~mpmath.nsum`: *tol*, *method*, *maxterms*,
*steps*, *verbose*.
If the option *exp=True* is set, `f` will be
sampled at exponentially spaced points `n = 2^1, 2^2, 2^3, \ldots`
instead of the linearly spaced points `n = 1, 2, 3, \ldots`.
This can sometimes improve the rate of convergence so that
:func:`~mpmath.limit` may return a more accurate answer (and faster).
However, do note that this can only be used if `f`
supports fast and accurate evaluation for arguments that
are extremely close to the limit point (or if infinite,
very large arguments).
**Examples**
A basic evaluation of a removable singularity::
>>> from mpmath import *
>>> mp.dps = 30; mp.pretty = True
>>> limit(lambda x: (x-sin(x))/x**3, 0)
0.166666666666666666666666666667
Computing the exponential function using its limit definition::
>>> limit(lambda n: (1+3/n)**n, inf)
20.0855369231876677409285296546
>>> exp(3)
20.0855369231876677409285296546
A limit for `\pi`::
>>> f = lambda n: 2**(4*n+1)*fac(n)**4/(2*n+1)/fac(2*n)**2
>>> limit(f, inf)
3.14159265358979323846264338328
Calculating the coefficient in Stirling's formula::
>>> limit(lambda n: fac(n) / (sqrt(n)*(n/e)**n), inf)
2.50662827463100050241576528481
>>> sqrt(2*pi)
2.50662827463100050241576528481
Evaluating Euler's constant `\gamma` using the limit representation
.. math ::
\gamma = \lim_{n \rightarrow \infty } \left[ \left(
\sum_{k=1}^n \frac{1}{k} \right) - \log(n) \right]
(which converges notoriously slowly)::
>>> f = lambda n: sum([mpf(1)/k for k in range(1,int(n)+1)]) - log(n)
>>> limit(f, inf)
0.577215664901532860606512090082
>>> +euler
0.577215664901532860606512090082
With default settings, the following limit converges too slowly
to be evaluated accurately. Changing to exponential sampling
however gives a perfect result::
>>> f = lambda x: sqrt(x**3+x**2)/(sqrt(x**3)+x)
>>> limit(f, inf)
0.992831158558330281129249686491
>>> limit(f, inf, exp=True)
1.0
"""
if ctx.isinf(x):
direction = ctx.sign(x)
g = lambda k: f(ctx.mpf(k+1)*direction)
else:
direction *= ctx.one
g = lambda k: f(x + direction/(k+1))
if exp:
h = g
g = lambda k: h(2**k)
def update(values, indices):
for k in indices:
values.append(g(k+1))
# XXX: steps used by nsum don't work well
if not 'steps' in kwargs:
kwargs['steps'] = [10]
return +ctx.adaptive_extrapolation(update, None, kwargs)
|