File size: 32,856 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
from __future__ import print_function

from copy import copy

from ..libmp.backend import xrange

class OptimizationMethods(object):
    def __init__(ctx):
        pass

##############
# 1D-SOLVERS #
##############

class Newton:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0 close to the root.

    Pro:

    * converges fast
    * sometimes more robust than secant with bad second starting point

    Contra:

    * converges slowly for multiple roots
    * needs first derivative
    * 2 function evaluations per iteration
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
        else:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df

    def __iter__(self):
        f = self.f
        df = self.df
        x0 = self.x0
        while True:
            x1 = x0 - f(x0) / df(x0)
            error = abs(x1 - x0)
            x0 = x1
            yield (x1, error)

class Secant:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0 and x1 close to the root.
    x1 defaults to x0 + 0.25.

    Pro:

    * converges fast

    Contra:

    * converges slowly for multiple roots
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
            self.x1 = self.x0 + 0.25
        elif len(x0) == 2:
            self.x0 = x0[0]
            self.x1 = x0[1]
        else:
            raise ValueError('expected 1 or 2 starting points, got %i' % len(x0))
        self.f = f

    def __iter__(self):
        f = self.f
        x0 = self.x0
        x1 = self.x1
        f0 = f(x0)
        while True:
            f1 = f(x1)
            l = x1 - x0
            if not l:
                break
            s = (f1 - f0) / l
            if not s:
                break
            x0, x1 = x1, x1 - f1/s
            f0 = f1
            yield x1, abs(l)

class MNewton:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting point x0 close to the root.
    Uses modified Newton's method that converges fast regardless of the
    multiplicity of the root.

    Pro:

    * converges fast for multiple roots

    Contra:

    * needs first and second derivative of f
    * 3 function evaluations per iteration
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        if not 'd2f' in kwargs:
            def d2f(x):
                return self.ctx.diff(df, x)
        else:
            d2f = kwargs['df']
        self.d2f = d2f

    def __iter__(self):
        x = self.x0
        f = self.f
        df = self.df
        d2f = self.d2f
        while True:
            prevx = x
            fx = f(x)
            if fx == 0:
                break
            dfx = df(x)
            d2fx = d2f(x)
            # x = x - F(x)/F'(x) with F(x) = f(x)/f'(x)
            x -= fx / (dfx - fx * d2fx / dfx)
            error = abs(x - prevx)
            yield x, error

class Halley:
    """
    1d-solver generating pairs of approximative root and error.

    Needs a starting point x0 close to the root.
    Uses Halley's method with cubic convergence rate.

    Pro:

    * converges even faster the Newton's method
    * useful when computing with *many* digits

    Contra:

    * needs first and second derivative of f
    * 3 function evaluations per iteration
    * converges slowly for multiple roots
    """

    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        if not 'd2f' in kwargs:
            def d2f(x):
                return self.ctx.diff(df, x)
        else:
            d2f = kwargs['df']
        self.d2f = d2f

    def __iter__(self):
        x = self.x0
        f = self.f
        df = self.df
        d2f = self.d2f
        while True:
            prevx = x
            fx = f(x)
            dfx = df(x)
            d2fx = d2f(x)
            x -=  2*fx*dfx / (2*dfx**2 - fx*d2fx)
            error = abs(x - prevx)
            yield x, error

class Muller:
    """
    1d-solver generating pairs of approximative root and error.

    Needs starting points x0, x1 and x2 close to the root.
    x1 defaults to x0 + 0.25; x2 to x1 + 0.25.
    Uses Muller's method that converges towards complex roots.

    Pro:

    * converges fast (somewhat faster than secant)
    * can find complex roots

    Contra:

    * converges slowly for multiple roots
    * may have complex values for real starting points and real roots

    http://en.wikipedia.org/wiki/Muller's_method
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) == 1:
            self.x0 = x0[0]
            self.x1 = self.x0 + 0.25
            self.x2 = self.x1 + 0.25
        elif len(x0) == 2:
            self.x0 = x0[0]
            self.x1 = x0[1]
            self.x2 = self.x1 + 0.25
        elif len(x0) == 3:
            self.x0 = x0[0]
            self.x1 = x0[1]
            self.x2 = x0[2]
        else:
            raise ValueError('expected 1, 2 or 3 starting points, got %i'
                             % len(x0))
        self.f = f
        self.verbose = kwargs['verbose']

    def __iter__(self):
        f = self.f
        x0 = self.x0
        x1 = self.x1
        x2 = self.x2
        fx0 = f(x0)
        fx1 = f(x1)
        fx2 = f(x2)
        while True:
            # TODO: maybe refactoring with function for divided differences
            # calculate divided differences
            fx2x1 = (fx1 - fx2) / (x1 - x2)
            fx2x0 = (fx0 - fx2) / (x0 - x2)
            fx1x0 = (fx0 - fx1) / (x0 - x1)
            w = fx2x1 + fx2x0 - fx1x0
            fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2)
            if w == 0 and fx2x1x0 == 0:
                if self.verbose:
                    print('canceled with')
                    print('x0 =', x0, ', x1 =', x1, 'and x2 =', x2)
                break
            x0 = x1
            fx0 = fx1
            x1 = x2
            fx1 = fx2
            # denominator should be as large as possible => choose sign
            r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0)
            if abs(w - r) > abs(w + r):
                r = -r
            x2 -= 2*fx2 / (w + r)
            fx2 = f(x2)
            error = abs(x2 - x1)
            yield x2, error

# TODO: consider raising a ValueError when there's no sign change in a and b
class Bisection:
    """
    1d-solver generating pairs of approximative root and error.

    Uses bisection method to find a root of f in [a, b].
    Might fail for multiple roots (needs sign change).

    Pro:

    * robust and reliable

    Contra:

    * converges slowly
    * needs sign change
    """
    maxsteps = 100

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.f = f
        self.a = x0[0]
        self.b = x0[1]

    def __iter__(self):
        f = self.f
        a = self.a
        b = self.b
        l = b - a
        fb = f(b)
        while True:
            m = self.ctx.ldexp(a + b, -1)
            fm = f(m)
            sign = fm * fb
            if sign < 0:
                a = m
            elif sign > 0:
                b = m
                fb = fm
            else:
                yield m, self.ctx.zero
            l /= 2
            yield (a + b)/2, abs(l)

def _getm(method):
    """
    Return a function to calculate m for Illinois-like methods.
    """
    if method == 'illinois':
        def getm(fz, fb):
            return 0.5
    elif method == 'pegasus':
        def getm(fz, fb):
            return fb/(fb + fz)
    elif method == 'anderson':
        def getm(fz, fb):
            m = 1 - fz/fb
            if m > 0:
                return m
            else:
                return 0.5
    else:
        raise ValueError("method '%s' not recognized" % method)
    return getm

class Illinois:
    """
    1d-solver generating pairs of approximative root and error.

    Uses Illinois method or similar to find a root of f in [a, b].
    Might fail for multiple roots (needs sign change).
    Combines bisect with secant (improved regula falsi).

    The only difference between the methods is the scaling factor m, which is
    used to ensure convergence (you can choose one using the 'method' keyword):

    Illinois method ('illinois'):
        m = 0.5

    Pegasus method ('pegasus'):
        m = fb/(fb + fz)

    Anderson-Bjoerk method ('anderson'):
        m = 1 - fz/fb if positive else 0.5

    Pro:

    * converges very fast

    Contra:

    * has problems with multiple roots
    * needs sign change
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.a = x0[0]
        self.b = x0[1]
        self.f = f
        self.tol = kwargs['tol']
        self.verbose = kwargs['verbose']
        self.method = kwargs.get('method', 'illinois')
        self.getm = _getm(self.method)
        if self.verbose:
            print('using %s method' % self.method)

    def __iter__(self):
        method = self.method
        f = self.f
        a = self.a
        b = self.b
        fa = f(a)
        fb = f(b)
        m = None
        while True:
            l = b - a
            if l == 0:
                break
            s = (fb - fa) / l
            z = a - fa/s
            fz = f(z)
            if abs(fz) < self.tol:
                # TODO: better condition (when f is very flat)
                if self.verbose:
                    print('canceled with z =', z)
                yield z, l
                break
            if fz * fb < 0: # root in [z, b]
                a = b
                fa = fb
                b = z
                fb = fz
            else: # root in [a, z]
                m = self.getm(fz, fb)
                b = z
                fb = fz
                fa = m*fa # scale down to ensure convergence
            if self.verbose and m and not method == 'illinois':
                print('m:', m)
            yield (a + b)/2, abs(l)

def Pegasus(*args, **kwargs):
    """
    1d-solver generating pairs of approximative root and error.

    Uses Pegasus method to find a root of f in [a, b].
    Wrapper for illinois to use method='pegasus'.
    """
    kwargs['method'] = 'pegasus'
    return Illinois(*args, **kwargs)

def Anderson(*args, **kwargs):
    """
    1d-solver generating pairs of approximative root and error.

    Uses Anderson-Bjoerk method to find a root of f in [a, b].
    Wrapper for illinois to use method='pegasus'.
    """
    kwargs['method'] = 'anderson'
    return Illinois(*args, **kwargs)

# TODO: check whether it's possible to combine it with Illinois stuff
class Ridder:
    """
    1d-solver generating pairs of approximative root and error.

    Ridders' method to find a root of f in [a, b].
    Is told to perform as well as Brent's method while being simpler.

    Pro:

    * very fast
    * simpler than Brent's method

    Contra:

    * two function evaluations per step
    * has problems with multiple roots
    * needs sign change

    http://en.wikipedia.org/wiki/Ridders'_method
    """
    maxsteps = 30

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        self.f = f
        if len(x0) != 2:
            raise ValueError('expected interval of 2 points, got %i' % len(x0))
        self.x1 = x0[0]
        self.x2 = x0[1]
        self.verbose = kwargs['verbose']
        self.tol = kwargs['tol']

    def __iter__(self):
        ctx = self.ctx
        f = self.f
        x1 = self.x1
        fx1 = f(x1)
        x2 = self.x2
        fx2 = f(x2)
        while True:
            x3 = 0.5*(x1 + x2)
            fx3 = f(x3)
            x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2)
            fx4 = f(x4)
            if abs(fx4) < self.tol:
                # TODO: better condition (when f is very flat)
                if self.verbose:
                    print('canceled with f(x4) =', fx4)
                yield x4, abs(x1 - x2)
                break
            if fx4 * fx2 < 0: # root in [x4, x2]
                x1 = x4
                fx1 = fx4
            else: # root in [x1, x4]
                x2 = x4
                fx2 = fx4
            error = abs(x1 - x2)
            yield (x1 + x2)/2, error

class ANewton:
    """
    EXPERIMENTAL 1d-solver generating pairs of approximative root and error.

    Uses Newton's method modified to use Steffensens method when convergence is
    slow. (I.e. for multiple roots.)
    """
    maxsteps = 20

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        if not len(x0) == 1:
            raise ValueError('expected 1 starting point, got %i' % len(x0))
        self.x0 = x0[0]
        self.f = f
        if not 'df' in kwargs:
            def df(x):
                return self.ctx.diff(f, x)
        else:
            df = kwargs['df']
        self.df = df
        def phi(x):
            return x - f(x) / df(x)
        self.phi = phi
        self.verbose = kwargs['verbose']

    def __iter__(self):
        x0 = self.x0
        f = self.f
        df = self.df
        phi = self.phi
        error = 0
        counter = 0
        while True:
            prevx = x0
            try:
                x0 = phi(x0)
            except ZeroDivisionError:
                if self.verbose:
                    print('ZeroDivisionError: canceled with x =', x0)
                break
            preverror = error
            error = abs(prevx - x0)
            # TODO: decide not to use convergence acceleration
            if error and abs(error - preverror) / error < 1:
                if self.verbose:
                    print('converging slowly')
                counter += 1
            if counter >= 3:
                # accelerate convergence
                phi = steffensen(phi)
                counter = 0
                if self.verbose:
                    print('accelerating convergence')
            yield x0, error

# TODO: add Brent

############################
# MULTIDIMENSIONAL SOLVERS #
############################

def jacobian(ctx, f, x):
    """
    Calculate the Jacobian matrix of a function at the point x0.

    This is the first derivative of a vectorial function:

        f : R^m -> R^n with m >= n
    """
    x = ctx.matrix(x)
    h = ctx.sqrt(ctx.eps)
    fx = ctx.matrix(f(*x))
    m = len(fx)
    n = len(x)
    J = ctx.matrix(m, n)
    for j in xrange(n):
        xj = x.copy()
        xj[j] += h
        Jj = (ctx.matrix(f(*xj)) - fx) / h
        for i in xrange(m):
            J[i,j] = Jj[i]
    return J

# TODO: test with user-specified jacobian matrix
class MDNewton:
    """
    Find the root of a vector function numerically using Newton's method.

    f is a vector function representing a nonlinear equation system.

    x0 is the starting point close to the root.

    J is a function returning the Jacobian matrix for a point.

    Supports overdetermined systems.

    Use the 'norm' keyword to specify which norm to use. Defaults to max-norm.
    The function to calculate the Jacobian matrix can be given using the
    keyword 'J'. Otherwise it will be calculated numerically.

    Please note that this method converges only locally. Especially for high-
    dimensional systems it is not trivial to find a good starting point being
    close enough to the root.

    It is recommended to use a faster, low-precision solver from SciPy [1] or
    OpenOpt [2] to get an initial guess. Afterwards you can use this method for
    root-polishing to any precision.

    [1] http://scipy.org

    [2] http://openopt.org/Welcome
    """
    maxsteps = 10

    def __init__(self, ctx, f, x0, **kwargs):
        self.ctx = ctx
        self.f = f
        if isinstance(x0, (tuple, list)):
            x0 = ctx.matrix(x0)
        assert x0.cols == 1, 'need a vector'
        self.x0 = x0
        if 'J' in kwargs:
            self.J = kwargs['J']
        else:
            def J(*x):
                return ctx.jacobian(f, x)
            self.J = J
        self.norm = kwargs['norm']
        self.verbose = kwargs['verbose']

    def __iter__(self):
        f = self.f
        x0 = self.x0
        norm = self.norm
        J = self.J
        fx = self.ctx.matrix(f(*x0))
        fxnorm = norm(fx)
        cancel = False
        while not cancel:
            # get direction of descent
            fxn = -fx
            Jx = J(*x0)
            s = self.ctx.lu_solve(Jx, fxn)
            if self.verbose:
                print('Jx:')
                print(Jx)
                print('s:', s)
            # damping step size TODO: better strategy (hard task)
            l = self.ctx.one
            x1 = x0 + s
            while True:
                if x1 == x0:
                    if self.verbose:
                        print("canceled, won't get more excact")
                    cancel = True
                    break
                fx = self.ctx.matrix(f(*x1))
                newnorm = norm(fx)
                if newnorm < fxnorm:
                    # new x accepted
                    fxnorm = newnorm
                    x0 = x1
                    break
                l /= 2
                x1 = x0 + l*s
            yield (x0, fxnorm)

#############
# UTILITIES #
#############

str2solver = {'newton':Newton, 'secant':Secant, 'mnewton':MNewton,
              'halley':Halley, 'muller':Muller, 'bisect':Bisection,
              'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson,
              'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton}

def findroot(ctx, f, x0, solver='secant', tol=None, verbose=False, verify=True, **kwargs):
    r"""
    Find an approximate solution to `f(x) = 0`, using *x0* as starting point or
    interval for *x*.

    Multidimensional overdetermined systems are supported.
    You can specify them using a function or a list of functions.

    Mathematically speaking, this function returns `x` such that
    `|f(x)|^2 \leq \mathrm{tol}` is true within the current working precision.
    If the computed value does not meet this criterion, an exception is raised.
    This exception can be disabled with *verify=False*.

    For interval arithmetic (``iv.findroot()``), please note that
    the returned interval ``x`` is not guaranteed to contain `f(x)=0`!
    It is only some `x` for which `|f(x)|^2 \leq \mathrm{tol}` certainly holds
    regardless of numerical error. This may be improved in the future.

    **Arguments**

    *f*
        one dimensional function
    *x0*
        starting point, several starting points or interval (depends on solver)
    *tol*
        the returned solution has an error smaller than this
    *verbose*
        print additional information for each iteration if true
    *verify*
        verify the solution and raise a ValueError if `|f(x)|^2 > \mathrm{tol}`
    *solver*
        a generator for *f* and *x0* returning approximative solution and error
    *maxsteps*
        after how many steps the solver will cancel
    *df*
        first derivative of *f* (used by some solvers)
    *d2f*
        second derivative of *f* (used by some solvers)
    *multidimensional*
        force multidimensional solving
    *J*
        Jacobian matrix of *f* (used by multidimensional solvers)
    *norm*
        used vector norm (used by multidimensional solvers)

    solver has to be callable with ``(f, x0, **kwargs)`` and return an generator
    yielding pairs of approximative solution and estimated error (which is
    expected to be positive).
    You can use the following string aliases:
    'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson',
    'ridder', 'anewton', 'bisect'

    See mpmath.calculus.optimization for their documentation.

    **Examples**

    The function :func:`~mpmath.findroot` locates a root of a given function using the
    secant method by default. A simple example use of the secant method is to
    compute `\pi` as the root of `\sin x` closest to `x_0 = 3`::

        >>> from mpmath import *
        >>> mp.dps = 30; mp.pretty = True
        >>> findroot(sin, 3)
        3.14159265358979323846264338328

    The secant method can be used to find complex roots of analytic functions,
    although it must in that case generally be given a nonreal starting value
    (or else it will never leave the real line)::

        >>> mp.dps = 15
        >>> findroot(lambda x: x**3 + 2*x + 1, j)
        (0.226698825758202 + 1.46771150871022j)

    A nice application is to compute nontrivial roots of the Riemann zeta
    function with many digits (good initial values are needed for convergence)::

        >>> mp.dps = 30
        >>> findroot(zeta, 0.5+14j)
        (0.5 + 14.1347251417346937904572519836j)

    The secant method can also be used as an optimization algorithm, by passing
    it a derivative of a function. The following example locates the positive
    minimum of the gamma function::

        >>> mp.dps = 20
        >>> findroot(lambda x: diff(gamma, x), 1)
        1.4616321449683623413

    Finally, a useful application is to compute inverse functions, such as the
    Lambert W function which is the inverse of `w e^w`, given the first
    term of the solution's asymptotic expansion as the initial value. In basic
    cases, this gives identical results to mpmath's built-in ``lambertw``
    function::

        >>> def lambert(x):
        ...     return findroot(lambda w: w*exp(w) - x, log(1+x))
        ...
        >>> mp.dps = 15
        >>> lambert(1); lambertw(1)
        0.567143290409784
        0.567143290409784
        >>> lambert(1000); lambert(1000)
        5.2496028524016
        5.2496028524016

    Multidimensional functions are also supported::

        >>> f = [lambda x1, x2: x1**2 + x2,
        ...      lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3]
        >>> findroot(f, (0, 0))
        [-0.618033988749895]
        [-0.381966011250105]
        >>> findroot(f, (10, 10))
        [ 1.61803398874989]
        [-2.61803398874989]

    You can verify this by solving the system manually.

    Please note that the following (more general) syntax also works::

        >>> def f(x1, x2):
        ...     return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3
        ...
        >>> findroot(f, (0, 0))
        [-0.618033988749895]
        [-0.381966011250105]


    **Multiple roots**

    For multiple roots all methods of the Newtonian family (including secant)
    converge slowly. Consider this example::

        >>> f = lambda x: (x - 1)**99
        >>> findroot(f, 0.9, verify=False)
        0.918073542444929

    Even for a very close starting point the secant method converges very
    slowly. Use ``verbose=True`` to illustrate this.

    It is possible to modify Newton's method to make it converge regardless of
    the root's multiplicity::

        >>> findroot(f, -10, solver='mnewton')
        1.0

    This variant uses the first and second derivative of the function, which is
    not very efficient.

    Alternatively you can use an experimental Newtonian solver that keeps track
    of the speed of convergence and accelerates it using Steffensen's method if
    necessary::

        >>> findroot(f, -10, solver='anewton', verbose=True)
        x:     -9.88888888888888888889
        error: 0.111111111111111111111
        converging slowly
        x:     -9.77890011223344556678
        error: 0.10998877665544332211
        converging slowly
        x:     -9.67002233332199662166
        error: 0.108877778911448945119
        converging slowly
        accelerating convergence
        x:     -9.5622443299551077669
        error: 0.107778003366888854764
        converging slowly
        x:     0.99999999999999999214
        error: 10.562244329955107759
        x:     1.0
        error: 7.8598304758094664213e-18
        ZeroDivisionError: canceled with x = 1.0
        1.0

    **Complex roots**

    For complex roots it's recommended to use Muller's method as it converges
    even for real starting points very fast::

        >>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller')
        (0.727136084491197 + 0.934099289460529j)


    **Intersection methods**

    When you need to find a root in a known interval, it's highly recommended to
    use an intersection-based solver like ``'anderson'`` or ``'ridder'``.
    Usually they converge faster and more reliable. They have however problems
    with multiple roots and usually need a sign change to find a root::

        >>> findroot(lambda x: x**3, (-1, 1), solver='anderson')
        0.0

    Be careful with symmetric functions::

        >>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS
        Traceback (most recent call last):
          ...
        ZeroDivisionError

    It fails even for better starting points, because there is no sign change::

        >>> findroot(lambda x: x**2, (-1, .5), solver='anderson')
        Traceback (most recent call last):
          ...
        ValueError: Could not find root within given tolerance. (1.0 > 2.16840434497100886801e-19)
        Try another starting point or tweak arguments.

    """
    prec = ctx.prec
    try:
        ctx.prec += 20

        # initialize arguments
        if tol is None:
            tol = ctx.eps * 2**10

        kwargs['verbose'] = kwargs.get('verbose', verbose)

        if 'd1f' in kwargs:
            kwargs['df'] = kwargs['d1f']

        kwargs['tol'] = tol
        if isinstance(x0, (list, tuple)):
            x0 = [ctx.convert(x) for x in x0]
        else:
            x0 = [ctx.convert(x0)]

        if isinstance(solver, str):
            try:
                solver = str2solver[solver]
            except KeyError:
                raise ValueError('could not recognize solver')

        # accept list of functions
        if isinstance(f, (list, tuple)):
            f2 = copy(f)
            def tmp(*args):
                return [fn(*args) for fn in f2]
            f = tmp

        # detect multidimensional functions
        try:
            fx = f(*x0)
            multidimensional = isinstance(fx, (list, tuple, ctx.matrix))
        except TypeError:
            fx = f(x0[0])
            multidimensional = False
        if 'multidimensional' in kwargs:
            multidimensional = kwargs['multidimensional']
        if multidimensional:
            # only one multidimensional solver available at the moment
            solver = MDNewton
            if not 'norm' in kwargs:
                norm = lambda x: ctx.norm(x, 'inf')
                kwargs['norm'] = norm
            else:
                norm = kwargs['norm']
        else:
            norm = abs

        # happily return starting point if it's a root
        if norm(fx) == 0:
            if multidimensional:
                return ctx.matrix(x0)
            else:
                return x0[0]

        # use solver
        iterations = solver(ctx, f, x0, **kwargs)
        if 'maxsteps' in kwargs:
            maxsteps = kwargs['maxsteps']
        else:
            maxsteps = iterations.maxsteps
        i = 0
        for x, error in iterations:
            if verbose:
                print('x:    ', x)
                print('error:', error)
            i += 1
            if error < tol * max(1, norm(x)) or i >= maxsteps:
                break
        else:
            if not i:
                raise ValueError('Could not find root using the given solver.\n'
                                 'Try another starting point or tweak arguments.')
        if not isinstance(x, (list, tuple, ctx.matrix)):
            xl = [x]
        else:
            xl = x
        if verify and norm(f(*xl))**2 > tol: # TODO: better condition?
            raise ValueError('Could not find root within given tolerance. '
                             '(%s > %s)\n'
                             'Try another starting point or tweak arguments.'
                             % (norm(f(*xl))**2, tol))
        return x
    finally:
        ctx.prec = prec


def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs):
    """
    Return the multiplicity of a given root of f.

    Internally, numerical derivatives are used. This might be inefficient for
    higher order derviatives. Due to this, ``multiplicity`` cancels after
    evaluating 10 derivatives by default. You can be specify the n-th derivative
    using the dnf keyword.

    >>> from mpmath import *
    >>> multiplicity(lambda x: sin(x) - 1, pi/2)
    2

    """
    if tol is None:
        tol = ctx.eps ** 0.8
    kwargs['d0f'] = f
    for i in xrange(maxsteps):
        dfstr = 'd' + str(i) + 'f'
        if dfstr in kwargs:
            df = kwargs[dfstr]
        else:
            df = lambda x: ctx.diff(f, x, i)
        if not abs(df(root)) < tol:
            break
    return i

def steffensen(f):
    """
    linear convergent function -> quadratic convergent function

    Steffensen's method for quadratic convergence of a linear converging
    sequence.
    Don not use it for higher rates of convergence.
    It may even work for divergent sequences.

    Definition:
    F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x)

    Example
    .......

    You can use Steffensen's method to accelerate a fixpoint iteration of linear
    (or less) convergence.

    x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For
    phi(x) = x**2 there are two fixpoints: 0 and 1.

    Let's try Steffensen's method:

    >>> f = lambda x: x**2
    >>> from mpmath.calculus.optimization import steffensen
    >>> F = steffensen(f)
    >>> for x in [0.5, 0.9, 2.0]:
    ...     fx = Fx = x
    ...     for i in xrange(9):
    ...         try:
    ...             fx = f(fx)
    ...         except OverflowError:
    ...             pass
    ...         try:
    ...             Fx = F(Fx)
    ...         except ZeroDivisionError:
    ...             pass
    ...         print('%20g  %20g' % (fx, Fx))
                    0.25                  -0.5
                  0.0625                   0.1
              0.00390625            -0.0011236
             1.52588e-05           1.41691e-09
             2.32831e-10          -2.84465e-27
             5.42101e-20           2.30189e-80
             2.93874e-39          -1.2197e-239
             8.63617e-78                     0
            7.45834e-155                     0
                    0.81               1.02676
                  0.6561               1.00134
                0.430467                     1
                0.185302                     1
               0.0343368                     1
              0.00117902                     1
             1.39008e-06                     1
             1.93233e-12                     1
             3.73392e-24                     1
                       4                   1.6
                      16                1.2962
                     256               1.10194
                   65536               1.01659
             4.29497e+09               1.00053
             1.84467e+19                     1
             3.40282e+38                     1
             1.15792e+77                     1
            1.34078e+154                     1

    Unmodified, the iteration converges only towards 0. Modified it converges
    not only much faster, it converges even to the repelling fixpoint 1.
    """
    def F(x):
        fx = f(x)
        ffx = f(fx)
        return (x*ffx - fx**2) / (ffx - 2*fx + x)
    return F

OptimizationMethods.jacobian = jacobian
OptimizationMethods.findroot = findroot
OptimizationMethods.multiplicity = multiplicity

if __name__ == '__main__':
    import doctest
    doctest.testmod()