Spaces:
Running
Running
File size: 49,452 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 |
"""
This module defines the mpf, mpc classes, and standard functions for
operating with them.
"""
__docformat__ = 'plaintext'
import functools
import re
from .ctx_base import StandardBaseContext
from .libmp.backend import basestring, BACKEND
from . import libmp
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
ComplexResult, to_pickable, from_pickable, normalize,
from_int, from_float, from_str, to_int, to_float, to_str,
from_rational, from_man_exp,
fone, fzero, finf, fninf, fnan,
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
mpf_hash, mpf_rand,
mpf_sum,
bitcount, to_fixed,
mpc_to_str,
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
mpc_mpf_div,
mpf_pow,
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
mpf_glaisher, mpf_twinprime, mpf_mertens,
int_types)
from . import function_docs
from . import rational
new = object.__new__
get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??'
r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$')
if BACKEND == 'sage':
from sage.libs.mpmath.ext_main import Context as BaseMPContext
# pickle hack
import sage.libs.mpmath.ext_main as _mpf_module
else:
from .ctx_mp_python import PythonMPContext as BaseMPContext
from . import ctx_mp_python as _mpf_module
from .ctx_mp_python import _mpf, _mpc, mpnumeric
class MPContext(BaseMPContext, StandardBaseContext):
"""
Context for multiprecision arithmetic with a global precision.
"""
def __init__(ctx):
BaseMPContext.__init__(ctx)
ctx.trap_complex = False
ctx.pretty = False
ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
ctx._mpq = rational.mpq
ctx.default()
StandardBaseContext.__init__(ctx)
ctx.mpq = rational.mpq
ctx.init_builtins()
ctx.hyp_summators = {}
ctx._init_aliases()
# XXX: automate
try:
ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
ctx.primepi.im_func.func_doc = function_docs.primepi
ctx.psi.im_func.func_doc = function_docs.psi
ctx.atan2.im_func.func_doc = function_docs.atan2
except AttributeError:
# python 3
ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
ctx.primepi.__func__.func_doc = function_docs.primepi
ctx.psi.__func__.func_doc = function_docs.psi
ctx.atan2.__func__.func_doc = function_docs.atan2
ctx.digamma.func_doc = function_docs.digamma
ctx.cospi.func_doc = function_docs.cospi
ctx.sinpi.func_doc = function_docs.sinpi
def init_builtins(ctx):
mpf = ctx.mpf
mpc = ctx.mpc
# Exact constants
ctx.one = ctx.make_mpf(fone)
ctx.zero = ctx.make_mpf(fzero)
ctx.j = ctx.make_mpc((fzero,fone))
ctx.inf = ctx.make_mpf(finf)
ctx.ninf = ctx.make_mpf(fninf)
ctx.nan = ctx.make_mpf(fnan)
eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
"epsilon of working precision", "eps")
ctx.eps = eps
# Approximate constants
ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")
# Standard functions
ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)
ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)
# Faster versions
ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)
def to_fixed(ctx, x, prec):
return x.to_fixed(prec)
def hypot(ctx, x, y):
r"""
Computes the Euclidean norm of the vector `(x, y)`, equal
to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
x = ctx.convert(x)
y = ctx.convert(y)
return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))
def _gamma_upper_int(ctx, n, z):
n = int(ctx._re(n))
if n == 0:
return ctx.e1(z)
if not hasattr(z, '_mpf_'):
raise NotImplementedError
prec, rounding = ctx._prec_rounding
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
if imag is None:
return ctx.make_mpf(real)
else:
return ctx.make_mpc((real, imag))
def _expint_int(ctx, n, z):
n = int(n)
if n == 1:
return ctx.e1(z)
if not hasattr(z, '_mpf_'):
raise NotImplementedError
prec, rounding = ctx._prec_rounding
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
if imag is None:
return ctx.make_mpf(real)
else:
return ctx.make_mpc((real, imag))
def _nthroot(ctx, x, n):
if hasattr(x, '_mpf_'):
try:
return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
except ComplexResult:
if ctx.trap_complex:
raise
x = (x._mpf_, libmp.fzero)
else:
x = x._mpc_
return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))
def _besselj(ctx, n, z):
prec, rounding = ctx._prec_rounding
if hasattr(z, '_mpf_'):
return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
elif hasattr(z, '_mpc_'):
return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))
def _agm(ctx, a, b=1):
prec, rounding = ctx._prec_rounding
if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
try:
v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
return ctx.make_mpf(v)
except ComplexResult:
pass
if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
else: a = a._mpc_
if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
else: b = b._mpc_
return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))
def bernoulli(ctx, n):
return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))
def _zeta_int(ctx, n):
return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))
def atan2(ctx, y, x):
x = ctx.convert(x)
y = ctx.convert(y)
return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))
def psi(ctx, m, z):
z = ctx.convert(z)
m = int(m)
if ctx._is_real_type(z):
return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
else:
return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))
def cos_sin(ctx, x, **kwargs):
if type(x) not in ctx.types:
x = ctx.convert(x)
prec, rounding = ctx._parse_prec(kwargs)
if hasattr(x, '_mpf_'):
c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
return ctx.make_mpf(c), ctx.make_mpf(s)
elif hasattr(x, '_mpc_'):
c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
return ctx.make_mpc(c), ctx.make_mpc(s)
else:
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
def cospi_sinpi(ctx, x, **kwargs):
if type(x) not in ctx.types:
x = ctx.convert(x)
prec, rounding = ctx._parse_prec(kwargs)
if hasattr(x, '_mpf_'):
c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
return ctx.make_mpf(c), ctx.make_mpf(s)
elif hasattr(x, '_mpc_'):
c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
return ctx.make_mpc(c), ctx.make_mpc(s)
else:
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
def clone(ctx):
"""
Create a copy of the context, with the same working precision.
"""
a = ctx.__class__()
a.prec = ctx.prec
return a
# Several helper methods
# TODO: add more of these, make consistent, write docstrings, ...
def _is_real_type(ctx, x):
if hasattr(x, '_mpc_') or type(x) is complex:
return False
return True
def _is_complex_type(ctx, x):
if hasattr(x, '_mpc_') or type(x) is complex:
return True
return False
def isnan(ctx, x):
"""
Return *True* if *x* is a NaN (not-a-number), or for a complex
number, whether either the real or complex part is NaN;
otherwise return *False*::
>>> from mpmath import *
>>> isnan(3.14)
False
>>> isnan(nan)
True
>>> isnan(mpc(3.14,2.72))
False
>>> isnan(mpc(3.14,nan))
True
"""
if hasattr(x, "_mpf_"):
return x._mpf_ == fnan
if hasattr(x, "_mpc_"):
return fnan in x._mpc_
if isinstance(x, int_types) or isinstance(x, rational.mpq):
return False
x = ctx.convert(x)
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
return ctx.isnan(x)
raise TypeError("isnan() needs a number as input")
def isfinite(ctx, x):
"""
Return *True* if *x* is a finite number, i.e. neither
an infinity or a NaN.
>>> from mpmath import *
>>> isfinite(inf)
False
>>> isfinite(-inf)
False
>>> isfinite(3)
True
>>> isfinite(nan)
False
>>> isfinite(3+4j)
True
>>> isfinite(mpc(3,inf))
False
>>> isfinite(mpc(nan,3))
False
"""
if ctx.isinf(x) or ctx.isnan(x):
return False
return True
def isnpint(ctx, x):
"""
Determine if *x* is a nonpositive integer.
"""
if not x:
return True
if hasattr(x, '_mpf_'):
sign, man, exp, bc = x._mpf_
return sign and exp >= 0
if hasattr(x, '_mpc_'):
return not x.imag and ctx.isnpint(x.real)
if type(x) in int_types:
return x <= 0
if isinstance(x, ctx.mpq):
p, q = x._mpq_
if not p:
return True
return q == 1 and p <= 0
return ctx.isnpint(ctx.convert(x))
def __str__(ctx):
lines = ["Mpmath settings:",
(" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
(" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
(" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
]
return "\n".join(lines)
@property
def _repr_digits(ctx):
return repr_dps(ctx._prec)
@property
def _str_digits(ctx):
return ctx._dps
def extraprec(ctx, n, normalize_output=False):
"""
The block
with extraprec(n):
<code>
increases the precision n bits, executes <code>, and then
restores the precision.
extraprec(n)(f) returns a decorated version of the function f
that increases the working precision by n bits before execution,
and restores the parent precision afterwards. With
normalize_output=True, it rounds the return value to the parent
precision.
"""
return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)
def extradps(ctx, n, normalize_output=False):
"""
This function is analogous to extraprec (see documentation)
but changes the decimal precision instead of the number of bits.
"""
return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)
def workprec(ctx, n, normalize_output=False):
"""
The block
with workprec(n):
<code>
sets the precision to n bits, executes <code>, and then restores
the precision.
workprec(n)(f) returns a decorated version of the function f
that sets the precision to n bits before execution,
and restores the precision afterwards. With normalize_output=True,
it rounds the return value to the parent precision.
"""
return PrecisionManager(ctx, lambda p: n, None, normalize_output)
def workdps(ctx, n, normalize_output=False):
"""
This function is analogous to workprec (see documentation)
but changes the decimal precision instead of the number of bits.
"""
return PrecisionManager(ctx, None, lambda d: n, normalize_output)
def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
r"""
Return a wrapped copy of *f* that repeatedly evaluates *f*
with increasing precision until the result converges to the
full precision used at the point of the call.
This heuristically protects against rounding errors, at the cost of
roughly a 2x slowdown compared to manually setting the optimal
precision. This method can, however, easily be fooled if the results
from *f* depend "discontinuously" on the precision, for instance
if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
should be used judiciously.
**Examples**
Many functions are sensitive to perturbations of the input arguments.
If the arguments are decimal numbers, they may have to be converted
to binary at a much higher precision. If the amount of required
extra precision is unknown, :func:`~mpmath.autoprec` is convenient::
>>> from mpmath import *
>>> mp.dps = 15
>>> mp.pretty = True
>>> besselj(5, 125 * 10**28) # Exact input
-8.03284785591801e-17
>>> besselj(5, '1.25e30') # Bad
7.12954868316652e-16
>>> autoprec(besselj)(5, '1.25e30') # Good
-8.03284785591801e-17
The following fails to converge because `\sin(\pi) = 0` whereas all
finite-precision approximations of `\pi` give nonzero values::
>>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
NoConvergence: autoprec: prec increased to 2910 without convergence
As the following example shows, :func:`~mpmath.autoprec` can protect against
cancellation, but is fooled by too severe cancellation::
>>> x = 1e-10
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
1.00000008274037e-10
1.00000000005e-10
1.00000000005e-10
>>> x = 1e-50
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
0.0
1.0e-50
0.0
With *catch*, an exception or list of exceptions to intercept
may be specified. The raised exception is interpreted
as signaling insufficient precision. This permits, for example,
evaluating a function where a too low precision results in a
division by zero::
>>> f = lambda x: 1/(exp(x)-1)
>>> f(1e-30)
Traceback (most recent call last):
...
ZeroDivisionError
>>> autoprec(f, catch=ZeroDivisionError)(1e-30)
1.0e+30
"""
def f_autoprec_wrapped(*args, **kwargs):
prec = ctx.prec
if maxprec is None:
maxprec2 = ctx._default_hyper_maxprec(prec)
else:
maxprec2 = maxprec
try:
ctx.prec = prec + 10
try:
v1 = f(*args, **kwargs)
except catch:
v1 = ctx.nan
prec2 = prec + 20
while 1:
ctx.prec = prec2
try:
v2 = f(*args, **kwargs)
except catch:
v2 = ctx.nan
if v1 == v2:
break
err = ctx.mag(v2-v1) - ctx.mag(v2)
if err < (-prec):
break
if verbose:
print("autoprec: target=%s, prec=%s, accuracy=%s" \
% (prec, prec2, -err))
v1 = v2
if prec2 >= maxprec2:
raise ctx.NoConvergence(\
"autoprec: prec increased to %i without convergence"\
% prec2)
prec2 += int(prec2*2)
prec2 = min(prec2, maxprec2)
finally:
ctx.prec = prec
return +v2
return f_autoprec_wrapped
def nstr(ctx, x, n=6, **kwargs):
"""
Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
significant digits. The small default value for *n* is chosen to
make this function useful for printing collections of numbers
(lists, matrices, etc).
If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
to each element. For unrecognized classes, :func:`~mpmath.nstr`
simply returns ``str(x)``.
The companion function :func:`~mpmath.nprint` prints the result
instead of returning it.
The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.
The number will be printed in fixed-point format if the position
of the leading digit is strictly between min_fixed
(default = min(-dps/3,-5)) and max_fixed (default = dps).
To force fixed-point format always, set min_fixed = -inf,
max_fixed = +inf. To force floating-point format, set
min_fixed >= max_fixed.
>>> from mpmath import *
>>> nstr([+pi, ldexp(1,-500)])
'[3.14159, 3.05494e-151]'
>>> nprint([+pi, ldexp(1,-500)])
[3.14159, 3.05494e-151]
>>> nstr(mpf("5e-10"), 5)
'5.0e-10'
>>> nstr(mpf("5e-10"), 5, strip_zeros=False)
'5.0000e-10'
>>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
'0.00000000050000'
>>> nstr(mpf(0), 5, show_zero_exponent=True)
'0.0e+0'
"""
if isinstance(x, list):
return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
if isinstance(x, tuple):
return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
if hasattr(x, '_mpf_'):
return to_str(x._mpf_, n, **kwargs)
if hasattr(x, '_mpc_'):
return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")"
if isinstance(x, basestring):
return repr(x)
if isinstance(x, ctx.matrix):
return x.__nstr__(n, **kwargs)
return str(x)
def _convert_fallback(ctx, x, strings):
if strings and isinstance(x, basestring):
if 'j' in x.lower():
x = x.lower().replace(' ', '')
match = get_complex.match(x)
re = match.group('re')
if not re:
re = 0
im = match.group('im').rstrip('j')
return ctx.mpc(ctx.convert(re), ctx.convert(im))
if hasattr(x, "_mpi_"):
a, b = x._mpi_
if a == b:
return ctx.make_mpf(a)
else:
raise ValueError("can only create mpf from zero-width interval")
raise TypeError("cannot create mpf from " + repr(x))
def mpmathify(ctx, *args, **kwargs):
return ctx.convert(*args, **kwargs)
def _parse_prec(ctx, kwargs):
if kwargs:
if kwargs.get('exact'):
return 0, 'f'
prec, rounding = ctx._prec_rounding
if 'rounding' in kwargs:
rounding = kwargs['rounding']
if 'prec' in kwargs:
prec = kwargs['prec']
if prec == ctx.inf:
return 0, 'f'
else:
prec = int(prec)
elif 'dps' in kwargs:
dps = kwargs['dps']
if dps == ctx.inf:
return 0, 'f'
prec = dps_to_prec(dps)
return prec, rounding
return ctx._prec_rounding
_exact_overflow_msg = "the exact result does not fit in memory"
_hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. Try with a higher maxprec,
maxterms, or set zeroprec."""
def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
if hasattr(z, "_mpf_"):
key = p, q, flags, 'R'
v = z._mpf_
elif hasattr(z, "_mpc_"):
key = p, q, flags, 'C'
v = z._mpc_
if key not in ctx.hyp_summators:
ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
summator = ctx.hyp_summators[key]
prec = ctx.prec
maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
extraprec = 50
epsshift = 25
# Jumps in magnitude occur when parameters are close to negative
# integers. We must ensure that these terms are included in
# the sum and added accurately
magnitude_check = {}
max_total_jump = 0
for i, c in enumerate(coeffs):
if flags[i] == 'Z':
if i >= p and c <= 0:
ok = False
for ii, cc in enumerate(coeffs[:p]):
# Note: c <= cc or c < cc, depending on convention
if flags[ii] == 'Z' and cc <= 0 and c <= cc:
ok = True
if not ok:
raise ZeroDivisionError("pole in hypergeometric series")
continue
n, d = ctx.nint_distance(c)
n = -int(n)
d = -d
if i >= p and n >= 0 and d > 4:
if n in magnitude_check:
magnitude_check[n] += d
else:
magnitude_check[n] = d
extraprec = max(extraprec, d - prec + 60)
max_total_jump += abs(d)
while 1:
if extraprec > maxprec:
raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
wp = prec + extraprec
if magnitude_check:
mag_dict = dict((n,None) for n in magnitude_check)
else:
mag_dict = {}
zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
epsshift, mag_dict, **kwargs)
cancel = -magnitude
jumps_resolved = True
if extraprec < max_total_jump:
for n in mag_dict.values():
if (n is None) or (n < prec):
jumps_resolved = False
break
accurate = (cancel < extraprec-25-5 or not accurate_small)
if jumps_resolved:
if accurate:
break
# zero?
zeroprec = kwargs.get('zeroprec')
if zeroprec is not None:
if cancel > zeroprec:
if have_complex:
return ctx.mpc(0)
else:
return ctx.zero
# Some near-singularities were not included, so increase
# precision and repeat until they are
extraprec *= 2
# Possible workaround for bad roundoff in fixed-point arithmetic
epsshift += 5
extraprec += 5
if type(zv) is tuple:
if have_complex:
return ctx.make_mpc(zv)
else:
return ctx.make_mpf(zv)
else:
return zv
def ldexp(ctx, x, n):
r"""
Computes `x 2^n` efficiently. No rounding is performed.
The argument `x` must be a real floating-point number (or
possible to convert into one) and `n` must be a Python ``int``.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> ldexp(1, 10)
mpf('1024.0')
>>> ldexp(1, -3)
mpf('0.125')
"""
x = ctx.convert(x)
return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))
def frexp(ctx, x):
r"""
Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
`n` a Python integer, and such that `x = y 2^n`. No rounding is
performed.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> frexp(7.5)
(mpf('0.9375'), 3)
"""
x = ctx.convert(x)
y, n = libmp.mpf_frexp(x._mpf_)
return ctx.make_mpf(y), n
def fneg(ctx, x, **kwargs):
"""
Negates the number *x*, giving a floating-point result, optionally
using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
An mpmath number is returned::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fneg(2.5)
mpf('-2.5')
>>> fneg(-5+2j)
mpc(real='5.0', imag='-2.0')
Precise control over rounding is possible::
>>> x = fadd(2, 1e-100, exact=True)
>>> fneg(x)
mpf('-2.0')
>>> fneg(x, rounding='f')
mpf('-2.0000000000000004')
Negating with and without roundoff::
>>> n = 200000000000000000000001
>>> print(int(-mpf(n)))
-200000000000000016777216
>>> print(int(fneg(n)))
-200000000000000016777216
>>> print(int(fneg(n, prec=log(n,2)+1)))
-200000000000000000000001
>>> print(int(fneg(n, dps=log(n,10)+1)))
-200000000000000000000001
>>> print(int(fneg(n, prec=inf)))
-200000000000000000000001
>>> print(int(fneg(n, dps=inf)))
-200000000000000000000001
>>> print(int(fneg(n, exact=True)))
-200000000000000000000001
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
if hasattr(x, '_mpf_'):
return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fadd(ctx, x, y, **kwargs):
"""
Adds the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
The default precision is the working precision of the context.
You can specify a custom precision in bits by passing the *prec* keyword
argument, or by providing an equivalent decimal precision with the *dps*
keyword argument. If the precision is set to ``+inf``, or if the flag
*exact=True* is passed, an exact addition with no rounding is performed.
When the precision is finite, the optional *rounding* keyword argument
specifies the direction of rounding. Valid options are ``'n'`` for
nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
for down, ``'u'`` for up.
**Examples**
Using :func:`~mpmath.fadd` with precision and rounding control::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fadd(2, 1e-20)
mpf('2.0')
>>> fadd(2, 1e-20, rounding='u')
mpf('2.0000000000000004')
>>> nprint(fadd(2, 1e-20, prec=100), 25)
2.00000000000000000001
>>> nprint(fadd(2, 1e-20, dps=15), 25)
2.0
>>> nprint(fadd(2, 1e-20, dps=25), 25)
2.00000000000000000001
>>> nprint(fadd(2, 1e-20, exact=True), 25)
2.00000000000000000001
Exact addition avoids cancellation errors, enforcing familiar laws
of numbers such as `x+y-x = y`, which don't hold in floating-point
arithmetic with finite precision::
>>> x, y = mpf(2), mpf('1e-1000')
>>> print(x + y - x)
0.0
>>> print(fadd(x, y, prec=inf) - x)
1.0e-1000
>>> print(fadd(x, y, exact=True) - x)
1.0e-1000
Exact addition can be inefficient and may be impossible to perform
with large magnitude differences::
>>> fadd(1, '1e-100000000000000000000', prec=inf)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fsub(ctx, x, y, **kwargs):
"""
Subtracts the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
Using :func:`~mpmath.fsub` with precision and rounding control::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fsub(2, 1e-20)
mpf('2.0')
>>> fsub(2, 1e-20, rounding='d')
mpf('1.9999999999999998')
>>> nprint(fsub(2, 1e-20, prec=100), 25)
1.99999999999999999999
>>> nprint(fsub(2, 1e-20, dps=15), 25)
2.0
>>> nprint(fsub(2, 1e-20, dps=25), 25)
1.99999999999999999999
>>> nprint(fsub(2, 1e-20, exact=True), 25)
1.99999999999999999999
Exact subtraction avoids cancellation errors, enforcing familiar laws
of numbers such as `x-y+y = x`, which don't hold in floating-point
arithmetic with finite precision::
>>> x, y = mpf(2), mpf('1e1000')
>>> print(x - y + y)
0.0
>>> print(fsub(x, y, prec=inf) + y)
2.0
>>> print(fsub(x, y, exact=True) + y)
2.0
Exact addition can be inefficient and may be impossible to perform
with large magnitude differences::
>>> fsub(1, '1e-100000000000000000000', prec=inf)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fmul(ctx, x, y, **kwargs):
"""
Multiplies the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
The result is an mpmath number::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fmul(2, 5.0)
mpf('10.0')
>>> fmul(0.5j, 0.5)
mpc(real='0.0', imag='0.25')
Avoiding roundoff::
>>> x, y = 10**10+1, 10**15+1
>>> print(x*y)
10000000001000010000000001
>>> print(mpf(x) * mpf(y))
1.0000000001e+25
>>> print(int(mpf(x) * mpf(y)))
10000000001000011026399232
>>> print(int(fmul(x, y)))
10000000001000011026399232
>>> print(int(fmul(x, y, dps=25)))
10000000001000010000000001
>>> print(int(fmul(x, y, exact=True)))
10000000001000010000000001
Exact multiplication with complex numbers can be inefficient and may
be impossible to perform with large magnitude differences between
real and imaginary parts::
>>> x = 1+2j
>>> y = mpc(2, '1e-100000000000000000000')
>>> fmul(x, y)
mpc(real='2.0', imag='4.0')
>>> fmul(x, y, rounding='u')
mpc(real='2.0', imag='4.0000000000000009')
>>> fmul(x, y, exact=True)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fdiv(ctx, x, y, **kwargs):
"""
Divides the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
The result is an mpmath number::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fdiv(3, 2)
mpf('1.5')
>>> fdiv(2, 3)
mpf('0.66666666666666663')
>>> fdiv(2+4j, 0.5)
mpc(real='4.0', imag='8.0')
The rounding direction and precision can be controlled::
>>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits
mpf('0.6666259765625')
>>> fdiv(2, 3, rounding='d')
mpf('0.66666666666666663')
>>> fdiv(2, 3, prec=60)
mpf('0.66666666666666667')
>>> fdiv(2, 3, rounding='u')
mpf('0.66666666666666674')
Checking the error of a division by performing it at higher precision::
>>> fdiv(2, 3) - fdiv(2, 3, prec=100)
mpf('-3.7007434154172148e-17')
Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
allowed since the quotient of two floating-point numbers generally
does not have an exact floating-point representation. (In the
future this might be changed to allow the case where the division
is actually exact.)
>>> fdiv(2, 3, exact=True)
Traceback (most recent call last):
...
ValueError: division is not an exact operation
"""
prec, rounding = ctx._parse_prec(kwargs)
if not prec:
raise ValueError("division is not an exact operation")
x = ctx.convert(x)
y = ctx.convert(y)
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def nint_distance(ctx, x):
r"""
Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
(measured in bits) lost to cancellation when computing `x-n`.
>>> from mpmath import *
>>> n, d = nint_distance(5)
>>> print(n); print(d)
5
-inf
>>> n, d = nint_distance(mpf(5))
>>> print(n); print(d)
5
-inf
>>> n, d = nint_distance(mpf(5.00000001))
>>> print(n); print(d)
5
-26
>>> n, d = nint_distance(mpf(4.99999999))
>>> print(n); print(d)
5
-26
>>> n, d = nint_distance(mpc(5,10))
>>> print(n); print(d)
5
4
>>> n, d = nint_distance(mpc(5,0.000001))
>>> print(n); print(d)
5
-19
"""
typx = type(x)
if typx in int_types:
return int(x), ctx.ninf
elif typx is rational.mpq:
p, q = x._mpq_
n, r = divmod(p, q)
if 2*r >= q:
n += 1
elif not r:
return n, ctx.ninf
# log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
d = bitcount(abs(p-n*q)) - bitcount(q)
return n, d
if hasattr(x, "_mpf_"):
re = x._mpf_
im_dist = ctx.ninf
elif hasattr(x, "_mpc_"):
re, im = x._mpc_
isign, iman, iexp, ibc = im
if iman:
im_dist = iexp + ibc
elif im == fzero:
im_dist = ctx.ninf
else:
raise ValueError("requires a finite number")
else:
x = ctx.convert(x)
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
return ctx.nint_distance(x)
else:
raise TypeError("requires an mpf/mpc")
sign, man, exp, bc = re
mag = exp+bc
# |x| < 0.5
if mag < 0:
n = 0
re_dist = mag
elif man:
# exact integer
if exp >= 0:
n = man << exp
re_dist = ctx.ninf
# exact half-integer
elif exp == -1:
n = (man>>1)+1
re_dist = 0
else:
d = (-exp-1)
t = man >> d
if t & 1:
t += 1
man = (t<<d) - man
else:
man -= (t<<d)
n = t>>1 # int(t)>>1
re_dist = exp+bitcount(man)
if sign:
n = -n
elif re == fzero:
re_dist = ctx.ninf
n = 0
else:
raise ValueError("requires a finite number")
return n, max(re_dist, im_dist)
def fprod(ctx, factors):
r"""
Calculates a product containing a finite number of factors (for
infinite products, see :func:`~mpmath.nprod`). The factors will be
converted to mpmath numbers.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fprod([1, 2, 0.5, 7])
mpf('7.0')
"""
orig = ctx.prec
try:
v = ctx.one
for p in factors:
v *= p
finally:
ctx.prec = orig
return +v
def rand(ctx):
"""
Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
The number of randomly generated bits in the mantissa is equal
to the working precision.
"""
return ctx.make_mpf(mpf_rand(ctx._prec))
def fraction(ctx, p, q):
"""
Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
the fraction `p/q`. The value is updated with the precision.
>>> from mpmath import *
>>> mp.dps = 15
>>> a = fraction(1,100)
>>> b = mpf(1)/100
>>> print(a); print(b)
0.01
0.01
>>> mp.dps = 30
>>> print(a); print(b) # a will be accurate
0.01
0.0100000000000000002081668171172
>>> mp.dps = 15
"""
return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
'%s/%s' % (p, q))
def absmin(ctx, x):
return abs(ctx.convert(x))
def absmax(ctx, x):
return abs(ctx.convert(x))
def _as_points(ctx, x):
# XXX: remove this?
if hasattr(x, '_mpi_'):
a, b = x._mpi_
return [ctx.make_mpf(a), ctx.make_mpf(b)]
return x
'''
def _zetasum(ctx, s, a, b):
"""
Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
integers.
"""
a = int(a)
b = int(b)
s = ctx.convert(s)
prec, rounding = ctx._prec_rounding
if hasattr(s, '_mpf_'):
v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
elif hasattr(s, '_mpc_'):
v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
return v
'''
def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
if not (ctx.isint(a) and hasattr(s, "_mpc_")):
raise NotImplementedError
a = int(a)
prec = ctx._prec
xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
xs = [ctx.make_mpc(x) for x in xs]
ys = [ctx.make_mpc(y) for y in ys]
return xs, ys
class PrecisionManager:
def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
self.ctx = ctx
self.precfun = precfun
self.dpsfun = dpsfun
self.normalize_output = normalize_output
def __call__(self, f):
@functools.wraps(f)
def g(*args, **kwargs):
orig = self.ctx.prec
try:
if self.precfun:
self.ctx.prec = self.precfun(self.ctx.prec)
else:
self.ctx.dps = self.dpsfun(self.ctx.dps)
if self.normalize_output:
v = f(*args, **kwargs)
if type(v) is tuple:
return tuple([+a for a in v])
return +v
else:
return f(*args, **kwargs)
finally:
self.ctx.prec = orig
return g
def __enter__(self):
self.origp = self.ctx.prec
if self.precfun:
self.ctx.prec = self.precfun(self.ctx.prec)
else:
self.ctx.dps = self.dpsfun(self.ctx.dps)
def __exit__(self, exc_type, exc_val, exc_tb):
self.ctx.prec = self.origp
return False
if __name__ == '__main__':
import doctest
doctest.testmod()
|