File size: 36,323 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
"""Functional interface to graph methods and assorted utilities.
"""

from collections import Counter
from itertools import chain

import networkx as nx
from networkx.utils import not_implemented_for, pairwise

__all__ = [
    "nodes",
    "edges",
    "degree",
    "degree_histogram",
    "neighbors",
    "number_of_nodes",
    "number_of_edges",
    "density",
    "is_directed",
    "freeze",
    "is_frozen",
    "subgraph",
    "induced_subgraph",
    "edge_subgraph",
    "restricted_view",
    "to_directed",
    "to_undirected",
    "add_star",
    "add_path",
    "add_cycle",
    "create_empty_copy",
    "set_node_attributes",
    "get_node_attributes",
    "set_edge_attributes",
    "get_edge_attributes",
    "all_neighbors",
    "non_neighbors",
    "non_edges",
    "common_neighbors",
    "is_weighted",
    "is_negatively_weighted",
    "is_empty",
    "selfloop_edges",
    "nodes_with_selfloops",
    "number_of_selfloops",
    "path_weight",
    "is_path",
]


def nodes(G):
    """Returns an iterator over the graph nodes."""
    return G.nodes()


def edges(G, nbunch=None):
    """Returns an edge view of edges incident to nodes in nbunch.

    Return all edges if nbunch is unspecified or nbunch=None.

    For digraphs, edges=out_edges
    """
    return G.edges(nbunch)


def degree(G, nbunch=None, weight=None):
    """Returns a degree view of single node or of nbunch of nodes.
    If nbunch is omitted, then return degrees of *all* nodes.
    """
    return G.degree(nbunch, weight)


def neighbors(G, n):
    """Returns a list of nodes connected to node n."""
    return G.neighbors(n)


def number_of_nodes(G):
    """Returns the number of nodes in the graph."""
    return G.number_of_nodes()


def number_of_edges(G):
    """Returns the number of edges in the graph."""
    return G.number_of_edges()


def density(G):
    r"""Returns the density of a graph.

    The density for undirected graphs is

    .. math::

       d = \frac{2m}{n(n-1)},

    and for directed graphs is

    .. math::

       d = \frac{m}{n(n-1)},

    where `n` is the number of nodes and `m`  is the number of edges in `G`.

    Notes
    -----
    The density is 0 for a graph without edges and 1 for a complete graph.
    The density of multigraphs can be higher than 1.

    Self loops are counted in the total number of edges so graphs with self
    loops can have density higher than 1.
    """
    n = number_of_nodes(G)
    m = number_of_edges(G)
    if m == 0 or n <= 1:
        return 0
    d = m / (n * (n - 1))
    if not G.is_directed():
        d *= 2
    return d


def degree_histogram(G):
    """Returns a list of the frequency of each degree value.

    Parameters
    ----------
    G : Networkx graph
       A graph

    Returns
    -------
    hist : list
       A list of frequencies of degrees.
       The degree values are the index in the list.

    Notes
    -----
    Note: the bins are width one, hence len(list) can be large
    (Order(number_of_edges))
    """
    counts = Counter(d for n, d in G.degree())
    return [counts.get(i, 0) for i in range(max(counts) + 1)]


def is_directed(G):
    """Return True if graph is directed."""
    return G.is_directed()


def frozen(*args, **kwargs):
    """Dummy method for raising errors when trying to modify frozen graphs"""
    raise nx.NetworkXError("Frozen graph can't be modified")


def freeze(G):
    """Modify graph to prevent further change by adding or removing
    nodes or edges.

    Node and edge data can still be modified.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> G = nx.freeze(G)
    >>> try:
    ...     G.add_edge(4, 5)
    ... except nx.NetworkXError as err:
    ...     print(str(err))
    Frozen graph can't be modified

    Notes
    -----
    To "unfreeze" a graph you must make a copy by creating a new graph object:

    >>> graph = nx.path_graph(4)
    >>> frozen_graph = nx.freeze(graph)
    >>> unfrozen_graph = nx.Graph(frozen_graph)
    >>> nx.is_frozen(unfrozen_graph)
    False

    See Also
    --------
    is_frozen
    """
    G.add_node = frozen
    G.add_nodes_from = frozen
    G.remove_node = frozen
    G.remove_nodes_from = frozen
    G.add_edge = frozen
    G.add_edges_from = frozen
    G.add_weighted_edges_from = frozen
    G.remove_edge = frozen
    G.remove_edges_from = frozen
    G.clear = frozen
    G.clear_edges = frozen
    G.frozen = True
    return G


def is_frozen(G):
    """Returns True if graph is frozen.

    Parameters
    ----------
    G : graph
      A NetworkX graph

    See Also
    --------
    freeze
    """
    try:
        return G.frozen
    except AttributeError:
        return False


def add_star(G_to_add_to, nodes_for_star, **attr):
    """Add a star to Graph G_to_add_to.

    The first node in `nodes_for_star` is the middle of the star.
    It is connected to all other nodes.

    Parameters
    ----------
    G_to_add_to : graph
        A NetworkX graph
    nodes_for_star : iterable container
        A container of nodes.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to every edge in star.

    See Also
    --------
    add_path, add_cycle

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_star(G, [0, 1, 2, 3])
    >>> nx.add_star(G, [10, 11, 12], weight=2)
    """
    nlist = iter(nodes_for_star)
    try:
        v = next(nlist)
    except StopIteration:
        return
    G_to_add_to.add_node(v)
    edges = ((v, n) for n in nlist)
    G_to_add_to.add_edges_from(edges, **attr)


def add_path(G_to_add_to, nodes_for_path, **attr):
    """Add a path to the Graph G_to_add_to.

    Parameters
    ----------
    G_to_add_to : graph
        A NetworkX graph
    nodes_for_path : iterable container
        A container of nodes.  A path will be constructed from
        the nodes (in order) and added to the graph.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to every edge in path.

    See Also
    --------
    add_star, add_cycle

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_path(G, [0, 1, 2, 3])
    >>> nx.add_path(G, [10, 11, 12], weight=7)
    """
    nlist = iter(nodes_for_path)
    try:
        first_node = next(nlist)
    except StopIteration:
        return
    G_to_add_to.add_node(first_node)
    G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist)), **attr)


def add_cycle(G_to_add_to, nodes_for_cycle, **attr):
    """Add a cycle to the Graph G_to_add_to.

    Parameters
    ----------
    G_to_add_to : graph
        A NetworkX graph
    nodes_for_cycle: iterable container
        A container of nodes.  A cycle will be constructed from
        the nodes (in order) and added to the graph.
    attr : keyword arguments, optional (default= no attributes)
        Attributes to add to every edge in cycle.

    See Also
    --------
    add_path, add_star

    Examples
    --------
    >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
    >>> nx.add_cycle(G, [0, 1, 2, 3])
    >>> nx.add_cycle(G, [10, 11, 12], weight=7)
    """
    nlist = iter(nodes_for_cycle)
    try:
        first_node = next(nlist)
    except StopIteration:
        return
    G_to_add_to.add_node(first_node)
    G_to_add_to.add_edges_from(
        pairwise(chain((first_node,), nlist), cyclic=True), **attr
    )


def subgraph(G, nbunch):
    """Returns the subgraph induced on nodes in nbunch.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nbunch : list, iterable
       A container of nodes that will be iterated through once (thus
       it should be an iterator or be iterable).  Each element of the
       container should be a valid node type: any hashable type except
       None.  If nbunch is None, return all edges data in the graph.
       Nodes in nbunch that are not in the graph will be (quietly)
       ignored.

    Notes
    -----
    subgraph(G) calls G.subgraph()
    """
    return G.subgraph(nbunch)


def induced_subgraph(G, nbunch):
    """Returns a SubGraph view of `G` showing only nodes in nbunch.

    The induced subgraph of a graph on a set of nodes N is the
    graph with nodes N and edges from G which have both ends in N.

    Parameters
    ----------
    G : NetworkX Graph
    nbunch : node, container of nodes or None (for all nodes)

    Returns
    -------
    subgraph : SubGraph View
        A read-only view of the subgraph in `G` induced by the nodes.
        Changes to the graph `G` will be reflected in the view.

    Notes
    -----
    To create a mutable subgraph with its own copies of nodes
    edges and attributes use `subgraph.copy()` or `Graph(subgraph)`

    For an inplace reduction of a graph to a subgraph you can remove nodes:
    `G.remove_nodes_from(n in G if n not in set(nbunch))`

    If you are going to compute subgraphs of your subgraphs you could
    end up with a chain of views that can be very slow once the chain
    has about 15 views in it. If they are all induced subgraphs, you
    can short-cut the chain by making them all subgraphs of the original
    graph. The graph class method `G.subgraph` does this when `G` is
    a subgraph. In contrast, this function allows you to choose to build
    chains or not, as you wish. The returned subgraph is a view on `G`.

    Examples
    --------
    >>> G = nx.path_graph(4)  # or DiGraph, MultiGraph, MultiDiGraph, etc
    >>> H = nx.induced_subgraph(G, [0, 1, 3])
    >>> list(H.edges)
    [(0, 1)]
    >>> list(H.nodes)
    [0, 1, 3]
    """
    induced_nodes = nx.filters.show_nodes(G.nbunch_iter(nbunch))
    return nx.subgraph_view(G, filter_node=induced_nodes)


def edge_subgraph(G, edges):
    """Returns a view of the subgraph induced by the specified edges.

    The induced subgraph contains each edge in `edges` and each
    node incident to any of those edges.

    Parameters
    ----------
    G : NetworkX Graph
    edges : iterable
        An iterable of edges. Edges not present in `G` are ignored.

    Returns
    -------
    subgraph : SubGraph View
        A read-only edge-induced subgraph of `G`.
        Changes to `G` are reflected in the view.

    Notes
    -----
    To create a mutable subgraph with its own copies of nodes
    edges and attributes use `subgraph.copy()` or `Graph(subgraph)`

    If you create a subgraph of a subgraph recursively you can end up
    with a chain of subgraphs that becomes very slow with about 15
    nested subgraph views. Luckily the edge_subgraph filter nests
    nicely so you can use the original graph as G in this function
    to avoid chains. We do not rule out chains programmatically so
    that odd cases like an `edge_subgraph` of a `restricted_view`
    can be created.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> H = G.edge_subgraph([(0, 1), (3, 4)])
    >>> list(H.nodes)
    [0, 1, 3, 4]
    >>> list(H.edges)
    [(0, 1), (3, 4)]
    """
    nxf = nx.filters
    edges = set(edges)
    nodes = set()
    for e in edges:
        nodes.update(e[:2])
    induced_nodes = nxf.show_nodes(nodes)
    if G.is_multigraph():
        if G.is_directed():
            induced_edges = nxf.show_multidiedges(edges)
        else:
            induced_edges = nxf.show_multiedges(edges)
    else:
        if G.is_directed():
            induced_edges = nxf.show_diedges(edges)
        else:
            induced_edges = nxf.show_edges(edges)
    return nx.subgraph_view(G, filter_node=induced_nodes, filter_edge=induced_edges)


def restricted_view(G, nodes, edges):
    """Returns a view of `G` with hidden nodes and edges.

    The resulting subgraph filters out node `nodes` and edges `edges`.
    Filtered out nodes also filter out any of their edges.

    Parameters
    ----------
    G : NetworkX Graph
    nodes : iterable
        An iterable of nodes. Nodes not present in `G` are ignored.
    edges : iterable
        An iterable of edges. Edges not present in `G` are ignored.

    Returns
    -------
    subgraph : SubGraph View
        A read-only restricted view of `G` filtering out nodes and edges.
        Changes to `G` are reflected in the view.

    Notes
    -----
    To create a mutable subgraph with its own copies of nodes
    edges and attributes use `subgraph.copy()` or `Graph(subgraph)`

    If you create a subgraph of a subgraph recursively you may end up
    with a chain of subgraph views. Such chains can get quite slow
    for lengths near 15. To avoid long chains, try to make your subgraph
    based on the original graph.  We do not rule out chains programmatically
    so that odd cases like an `edge_subgraph` of a `restricted_view`
    can be created.

    Examples
    --------
    >>> G = nx.path_graph(5)
    >>> H = nx.restricted_view(G, [0], [(1, 2), (3, 4)])
    >>> list(H.nodes)
    [1, 2, 3, 4]
    >>> list(H.edges)
    [(2, 3)]
    """
    nxf = nx.filters
    hide_nodes = nxf.hide_nodes(nodes)
    if G.is_multigraph():
        if G.is_directed():
            hide_edges = nxf.hide_multidiedges(edges)
        else:
            hide_edges = nxf.hide_multiedges(edges)
    else:
        if G.is_directed():
            hide_edges = nxf.hide_diedges(edges)
        else:
            hide_edges = nxf.hide_edges(edges)
    return nx.subgraph_view(G, filter_node=hide_nodes, filter_edge=hide_edges)


def to_directed(graph):
    """Returns a directed view of the graph `graph`.

    Identical to graph.to_directed(as_view=True)
    Note that graph.to_directed defaults to `as_view=False`
    while this function always provides a view.
    """
    return graph.to_directed(as_view=True)


def to_undirected(graph):
    """Returns an undirected view of the graph `graph`.

    Identical to graph.to_undirected(as_view=True)
    Note that graph.to_undirected defaults to `as_view=False`
    while this function always provides a view.
    """
    return graph.to_undirected(as_view=True)


def create_empty_copy(G, with_data=True):
    """Returns a copy of the graph G with all of the edges removed.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    with_data :  bool (default=True)
       Propagate Graph and Nodes data to the new graph.

    See Also
    --------
    empty_graph

    """
    H = G.__class__()
    H.add_nodes_from(G.nodes(data=with_data))
    if with_data:
        H.graph.update(G.graph)
    return H


def set_node_attributes(G, values, name=None):
    """Sets node attributes from a given value or dictionary of values.

    .. Warning:: The call order of arguments `values` and `name`
        switched between v1.x & v2.x.

    Parameters
    ----------
    G : NetworkX Graph

    values : scalar value, dict-like
        What the node attribute should be set to.  If `values` is
        not a dictionary, then it is treated as a single attribute value
        that is then applied to every node in `G`.  This means that if
        you provide a mutable object, like a list, updates to that object
        will be reflected in the node attribute for every node.
        The attribute name will be `name`.

        If `values` is a dict or a dict of dict, it should be keyed
        by node to either an attribute value or a dict of attribute key/value
        pairs used to update the node's attributes.

    name : string (optional, default=None)
        Name of the node attribute to set if values is a scalar.

    Examples
    --------
    After computing some property of the nodes of a graph, you may want
    to assign a node attribute to store the value of that property for
    each node::

        >>> G = nx.path_graph(3)
        >>> bb = nx.betweenness_centrality(G)
        >>> isinstance(bb, dict)
        True
        >>> nx.set_node_attributes(G, bb, "betweenness")
        >>> G.nodes[1]["betweenness"]
        1.0

    If you provide a list as the second argument, updates to the list
    will be reflected in the node attribute for each node::

        >>> G = nx.path_graph(3)
        >>> labels = []
        >>> nx.set_node_attributes(G, labels, "labels")
        >>> labels.append("foo")
        >>> G.nodes[0]["labels"]
        ['foo']
        >>> G.nodes[1]["labels"]
        ['foo']
        >>> G.nodes[2]["labels"]
        ['foo']

    If you provide a dictionary of dictionaries as the second argument,
    the outer dictionary is assumed to be keyed by node to an inner
    dictionary of node attributes for that node::

        >>> G = nx.path_graph(3)
        >>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}}
        >>> nx.set_node_attributes(G, attrs)
        >>> G.nodes[0]["attr1"]
        20
        >>> G.nodes[0]["attr2"]
        'nothing'
        >>> G.nodes[1]["attr2"]
        3
        >>> G.nodes[2]
        {}

    Note that if the dictionary contains nodes that are not in `G`, the
    values are silently ignored::

        >>> G = nx.Graph()
        >>> G.add_node(0)
        >>> nx.set_node_attributes(G, {0: "red", 1: "blue"}, name="color")
        >>> G.nodes[0]["color"]
        'red'
        >>> 1 in G.nodes
        False

    """
    # Set node attributes based on type of `values`
    if name is not None:  # `values` must not be a dict of dict
        try:  # `values` is a dict
            for n, v in values.items():
                try:
                    G.nodes[n][name] = values[n]
                except KeyError:
                    pass
        except AttributeError:  # `values` is a constant
            for n in G:
                G.nodes[n][name] = values
    else:  # `values` must be dict of dict
        for n, d in values.items():
            try:
                G.nodes[n].update(d)
            except KeyError:
                pass


def get_node_attributes(G, name, default=None):
    """Get node attributes from graph

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    default: object (default=None)
       Default value of the node attribute if there is no value set for that
       node in graph. If `None` then nodes without this attribute are not
       included in the returned dict.

    Returns
    -------
    Dictionary of attributes keyed by node.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_nodes_from([1, 2, 3], color="red")
    >>> color = nx.get_node_attributes(G, "color")
    >>> color[1]
    'red'
    >>> G.add_node(4)
    >>> color = nx.get_node_attributes(G, "color", default="yellow")
    >>> color[4]
    'yellow'
    """
    if default is not None:
        return {n: d.get(name, default) for n, d in G.nodes.items()}
    return {n: d[name] for n, d in G.nodes.items() if name in d}


def set_edge_attributes(G, values, name=None):
    """Sets edge attributes from a given value or dictionary of values.

    .. Warning:: The call order of arguments `values` and `name`
        switched between v1.x & v2.x.

    Parameters
    ----------
    G : NetworkX Graph

    values : scalar value, dict-like
        What the edge attribute should be set to.  If `values` is
        not a dictionary, then it is treated as a single attribute value
        that is then applied to every edge in `G`.  This means that if
        you provide a mutable object, like a list, updates to that object
        will be reflected in the edge attribute for each edge.  The attribute
        name will be `name`.

        If `values` is a dict or a dict of dict, it should be keyed
        by edge tuple to either an attribute value or a dict of attribute
        key/value pairs used to update the edge's attributes.
        For multigraphs, the edge tuples must be of the form ``(u, v, key)``,
        where `u` and `v` are nodes and `key` is the edge key.
        For non-multigraphs, the keys must be tuples of the form ``(u, v)``.

    name : string (optional, default=None)
        Name of the edge attribute to set if values is a scalar.

    Examples
    --------
    After computing some property of the edges of a graph, you may want
    to assign a edge attribute to store the value of that property for
    each edge::

        >>> G = nx.path_graph(3)
        >>> bb = nx.edge_betweenness_centrality(G, normalized=False)
        >>> nx.set_edge_attributes(G, bb, "betweenness")
        >>> G.edges[1, 2]["betweenness"]
        2.0

    If you provide a list as the second argument, updates to the list
    will be reflected in the edge attribute for each edge::

        >>> labels = []
        >>> nx.set_edge_attributes(G, labels, "labels")
        >>> labels.append("foo")
        >>> G.edges[0, 1]["labels"]
        ['foo']
        >>> G.edges[1, 2]["labels"]
        ['foo']

    If you provide a dictionary of dictionaries as the second argument,
    the entire dictionary will be used to update edge attributes::

        >>> G = nx.path_graph(3)
        >>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}}
        >>> nx.set_edge_attributes(G, attrs)
        >>> G[0][1]["attr1"]
        20
        >>> G[0][1]["attr2"]
        'nothing'
        >>> G[1][2]["attr2"]
        3

    The attributes of one Graph can be used to set those of another.

        >>> H = nx.path_graph(3)
        >>> nx.set_edge_attributes(H, G.edges)

    Note that if the dict contains edges that are not in `G`, they are
    silently ignored::

        >>> G = nx.Graph([(0, 1)])
        >>> nx.set_edge_attributes(G, {(1, 2): {"weight": 2.0}})
        >>> (1, 2) in G.edges()
        False

    For multigraphs, the `values` dict is expected to be keyed by 3-tuples
    including the edge key::

        >>> MG = nx.MultiGraph()
        >>> edges = [(0, 1), (0, 1)]
        >>> MG.add_edges_from(edges)  # Returns list of edge keys
        [0, 1]
        >>> attributes = {(0, 1, 0): {"cost": 21}, (0, 1, 1): {"cost": 7}}
        >>> nx.set_edge_attributes(MG, attributes)
        >>> MG[0][1][0]["cost"]
        21
        >>> MG[0][1][1]["cost"]
        7

    If MultiGraph attributes are desired for a Graph, you must convert the 3-tuple
    multiedge to a 2-tuple edge and the last multiedge's attribute value will
    overwrite the previous values. Continuing from the previous case we get::

        >>> H = nx.path_graph([0, 1, 2])
        >>> nx.set_edge_attributes(H, {(u, v): ed for u, v, ed in MG.edges.data()})
        >>> nx.get_edge_attributes(H, "cost")
        {(0, 1): 7}

    """
    if name is not None:
        # `values` does not contain attribute names
        try:
            # if `values` is a dict using `.items()` => {edge: value}
            if G.is_multigraph():
                for (u, v, key), value in values.items():
                    try:
                        G[u][v][key][name] = value
                    except KeyError:
                        pass
            else:
                for (u, v), value in values.items():
                    try:
                        G[u][v][name] = value
                    except KeyError:
                        pass
        except AttributeError:
            # treat `values` as a constant
            for u, v, data in G.edges(data=True):
                data[name] = values
    else:
        # `values` consists of doct-of-dict {edge: {attr: value}} shape
        if G.is_multigraph():
            for (u, v, key), d in values.items():
                try:
                    G[u][v][key].update(d)
                except KeyError:
                    pass
        else:
            for (u, v), d in values.items():
                try:
                    G[u][v].update(d)
                except KeyError:
                    pass


def get_edge_attributes(G, name, default=None):
    """Get edge attributes from graph

    Parameters
    ----------
    G : NetworkX Graph

    name : string
       Attribute name

    default: object (default=None)
       Default value of the edge attribute if there is no value set for that
       edge in graph. If `None` then edges without this attribute are not
       included in the returned dict.

    Returns
    -------
    Dictionary of attributes keyed by edge. For (di)graphs, the keys are
    2-tuples of the form: (u, v). For multi(di)graphs, the keys are 3-tuples of
    the form: (u, v, key).

    Examples
    --------
    >>> G = nx.Graph()
    >>> nx.add_path(G, [1, 2, 3], color="red")
    >>> color = nx.get_edge_attributes(G, "color")
    >>> color[(1, 2)]
    'red'
    >>> G.add_edge(3, 4)
    >>> color = nx.get_edge_attributes(G, "color", default="yellow")
    >>> color[(3, 4)]
    'yellow'
    """
    if G.is_multigraph():
        edges = G.edges(keys=True, data=True)
    else:
        edges = G.edges(data=True)
    if default is not None:
        return {x[:-1]: x[-1].get(name, default) for x in edges}
    return {x[:-1]: x[-1][name] for x in edges if name in x[-1]}


def all_neighbors(graph, node):
    """Returns all of the neighbors of a node in the graph.

    If the graph is directed returns predecessors as well as successors.

    Parameters
    ----------
    graph : NetworkX graph
        Graph to find neighbors.

    node : node
        The node whose neighbors will be returned.

    Returns
    -------
    neighbors : iterator
        Iterator of neighbors
    """
    if graph.is_directed():
        values = chain(graph.predecessors(node), graph.successors(node))
    else:
        values = graph.neighbors(node)
    return values


def non_neighbors(graph, node):
    """Returns the non-neighbors of the node in the graph.

    Parameters
    ----------
    graph : NetworkX graph
        Graph to find neighbors.

    node : node
        The node whose neighbors will be returned.

    Returns
    -------
    non_neighbors : iterator
        Iterator of nodes in the graph that are not neighbors of the node.
    """
    nbors = set(neighbors(graph, node)) | {node}
    return (nnode for nnode in graph if nnode not in nbors)


def non_edges(graph):
    """Returns the nonexistent edges in the graph.

    Parameters
    ----------
    graph : NetworkX graph.
        Graph to find nonexistent edges.

    Returns
    -------
    non_edges : iterator
        Iterator of edges that are not in the graph.
    """
    if graph.is_directed():
        for u in graph:
            for v in non_neighbors(graph, u):
                yield (u, v)
    else:
        nodes = set(graph)
        while nodes:
            u = nodes.pop()
            for v in nodes - set(graph[u]):
                yield (u, v)


@not_implemented_for("directed")
def common_neighbors(G, u, v):
    """Returns the common neighbors of two nodes in a graph.

    Parameters
    ----------
    G : graph
        A NetworkX undirected graph.

    u, v : nodes
        Nodes in the graph.

    Returns
    -------
    cnbors : iterator
        Iterator of common neighbors of u and v in the graph.

    Raises
    ------
    NetworkXError
        If u or v is not a node in the graph.

    Examples
    --------
    >>> G = nx.complete_graph(5)
    >>> sorted(nx.common_neighbors(G, 0, 1))
    [2, 3, 4]
    """
    if u not in G:
        raise nx.NetworkXError("u is not in the graph.")
    if v not in G:
        raise nx.NetworkXError("v is not in the graph.")

    # Return a generator explicitly instead of yielding so that the above
    # checks are executed eagerly.
    return (w for w in G[u] if w in G[v] and w not in (u, v))


def is_weighted(G, edge=None, weight="weight"):
    """Returns True if `G` has weighted edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    edge : tuple, optional
        A 2-tuple specifying the only edge in `G` that will be tested. If
        None, then every edge in `G` is tested.

    weight: string, optional
        The attribute name used to query for edge weights.

    Returns
    -------
    bool
        A boolean signifying if `G`, or the specified edge, is weighted.

    Raises
    ------
    NetworkXError
        If the specified edge does not exist.

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> nx.is_weighted(G)
    False
    >>> nx.is_weighted(G, (2, 3))
    False

    >>> G = nx.DiGraph()
    >>> G.add_edge(1, 2, weight=1)
    >>> nx.is_weighted(G)
    True

    """
    if edge is not None:
        data = G.get_edge_data(*edge)
        if data is None:
            msg = f"Edge {edge!r} does not exist."
            raise nx.NetworkXError(msg)
        return weight in data

    if is_empty(G):
        # Special handling required since: all([]) == True
        return False

    return all(weight in data for u, v, data in G.edges(data=True))


def is_negatively_weighted(G, edge=None, weight="weight"):
    """Returns True if `G` has negatively weighted edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    edge : tuple, optional
        A 2-tuple specifying the only edge in `G` that will be tested. If
        None, then every edge in `G` is tested.

    weight: string, optional
        The attribute name used to query for edge weights.

    Returns
    -------
    bool
        A boolean signifying if `G`, or the specified edge, is negatively
        weighted.

    Raises
    ------
    NetworkXError
        If the specified edge does not exist.

    Examples
    --------
    >>> G = nx.Graph()
    >>> G.add_edges_from([(1, 3), (2, 4), (2, 6)])
    >>> G.add_edge(1, 2, weight=4)
    >>> nx.is_negatively_weighted(G, (1, 2))
    False
    >>> G[2][4]["weight"] = -2
    >>> nx.is_negatively_weighted(G)
    True
    >>> G = nx.DiGraph()
    >>> edges = [("0", "3", 3), ("0", "1", -5), ("1", "0", -2)]
    >>> G.add_weighted_edges_from(edges)
    >>> nx.is_negatively_weighted(G)
    True

    """
    if edge is not None:
        data = G.get_edge_data(*edge)
        if data is None:
            msg = f"Edge {edge!r} does not exist."
            raise nx.NetworkXError(msg)
        return weight in data and data[weight] < 0

    return any(weight in data and data[weight] < 0 for u, v, data in G.edges(data=True))


def is_empty(G):
    """Returns True if `G` has no edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    Returns
    -------
    bool
        True if `G` has no edges, and False otherwise.

    Notes
    -----
    An empty graph can have nodes but not edges. The empty graph with zero
    nodes is known as the null graph. This is an $O(n)$ operation where n
    is the number of nodes in the graph.

    """
    return not any(G.adj.values())


def nodes_with_selfloops(G):
    """Returns an iterator over nodes with self loops.

    A node with a self loop has an edge with both ends adjacent
    to that node.

    Returns
    -------
    nodelist : iterator
        A iterator over nodes with self loops.

    See Also
    --------
    selfloop_edges, number_of_selfloops

    Examples
    --------
    >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
    >>> G.add_edge(1, 1)
    >>> G.add_edge(1, 2)
    >>> list(nx.nodes_with_selfloops(G))
    [1]

    """
    return (n for n, nbrs in G.adj.items() if n in nbrs)


def selfloop_edges(G, data=False, keys=False, default=None):
    """Returns an iterator over selfloop edges.

    A selfloop edge has the same node at both ends.

    Parameters
    ----------
    G : graph
        A NetworkX graph.
    data : string or bool, optional (default=False)
        Return selfloop edges as two tuples (u, v) (data=False)
        or three-tuples (u, v, datadict) (data=True)
        or three-tuples (u, v, datavalue) (data='attrname')
    keys : bool, optional (default=False)
        If True, return edge keys with each edge.
    default : value, optional (default=None)
        Value used for edges that don't have the requested attribute.
        Only relevant if data is not True or False.

    Returns
    -------
    edgeiter : iterator over edge tuples
        An iterator over all selfloop edges.

    See Also
    --------
    nodes_with_selfloops, number_of_selfloops

    Examples
    --------
    >>> G = nx.MultiGraph()  # or Graph, DiGraph, MultiDiGraph, etc
    >>> ekey = G.add_edge(1, 1)
    >>> ekey = G.add_edge(1, 2)
    >>> list(nx.selfloop_edges(G))
    [(1, 1)]
    >>> list(nx.selfloop_edges(G, data=True))
    [(1, 1, {})]
    >>> list(nx.selfloop_edges(G, keys=True))
    [(1, 1, 0)]
    >>> list(nx.selfloop_edges(G, keys=True, data=True))
    [(1, 1, 0, {})]
    """
    if data is True:
        if G.is_multigraph():
            if keys is True:
                return (
                    (n, n, k, d)
                    for n, nbrs in G.adj.items()
                    if n in nbrs
                    for k, d in nbrs[n].items()
                )
            else:
                return (
                    (n, n, d)
                    for n, nbrs in G.adj.items()
                    if n in nbrs
                    for d in nbrs[n].values()
                )
        else:
            return ((n, n, nbrs[n]) for n, nbrs in G.adj.items() if n in nbrs)
    elif data is not False:
        if G.is_multigraph():
            if keys is True:
                return (
                    (n, n, k, d.get(data, default))
                    for n, nbrs in G.adj.items()
                    if n in nbrs
                    for k, d in nbrs[n].items()
                )
            else:
                return (
                    (n, n, d.get(data, default))
                    for n, nbrs in G.adj.items()
                    if n in nbrs
                    for d in nbrs[n].values()
                )
        else:
            return (
                (n, n, nbrs[n].get(data, default))
                for n, nbrs in G.adj.items()
                if n in nbrs
            )
    else:
        if G.is_multigraph():
            if keys is True:
                return (
                    (n, n, k) for n, nbrs in G.adj.items() if n in nbrs for k in nbrs[n]
                )
            else:
                return (
                    (n, n)
                    for n, nbrs in G.adj.items()
                    if n in nbrs
                    for i in range(len(nbrs[n]))  # for easy edge removal (#4068)
                )
        else:
            return ((n, n) for n, nbrs in G.adj.items() if n in nbrs)


def number_of_selfloops(G):
    """Returns the number of selfloop edges.

    A selfloop edge has the same node at both ends.

    Returns
    -------
    nloops : int
        The number of selfloops.

    See Also
    --------
    nodes_with_selfloops, selfloop_edges

    Examples
    --------
    >>> G = nx.Graph()  # or DiGraph, MultiGraph, MultiDiGraph, etc
    >>> G.add_edge(1, 1)
    >>> G.add_edge(1, 2)
    >>> nx.number_of_selfloops(G)
    1
    """
    return sum(1 for _ in nx.selfloop_edges(G))


def is_path(G, path):
    """Returns whether or not the specified path exists.

    For it to return True, every node on the path must exist and
    each consecutive pair must be connected via one or more edges.

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    path : list
        A list of nodes which defines the path to traverse

    Returns
    -------
    bool
        True if `path` is a valid path in `G`

    """
    return all((node in G and nbr in G[node]) for node, nbr in nx.utils.pairwise(path))


def path_weight(G, path, weight):
    """Returns total cost associated with specified path and weight

    Parameters
    ----------
    G : graph
        A NetworkX graph.

    path: list
        A list of node labels which defines the path to traverse

    weight: string
        A string indicating which edge attribute to use for path cost

    Returns
    -------
    cost: int or float
        An integer or a float representing the total cost with respect to the
        specified weight of the specified path

    Raises
    ------
    NetworkXNoPath
        If the specified edge does not exist.
    """
    multigraph = G.is_multigraph()
    cost = 0

    if not nx.is_path(G, path):
        raise nx.NetworkXNoPath("path does not exist")
    for node, nbr in nx.utils.pairwise(path):
        if multigraph:
            cost += min(v[weight] for v in G[node][nbr].values())
        else:
            cost += G[node][nbr][weight]
    return cost