Spaces:
Running
Running
File size: 36,323 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 |
"""Functional interface to graph methods and assorted utilities.
"""
from collections import Counter
from itertools import chain
import networkx as nx
from networkx.utils import not_implemented_for, pairwise
__all__ = [
"nodes",
"edges",
"degree",
"degree_histogram",
"neighbors",
"number_of_nodes",
"number_of_edges",
"density",
"is_directed",
"freeze",
"is_frozen",
"subgraph",
"induced_subgraph",
"edge_subgraph",
"restricted_view",
"to_directed",
"to_undirected",
"add_star",
"add_path",
"add_cycle",
"create_empty_copy",
"set_node_attributes",
"get_node_attributes",
"set_edge_attributes",
"get_edge_attributes",
"all_neighbors",
"non_neighbors",
"non_edges",
"common_neighbors",
"is_weighted",
"is_negatively_weighted",
"is_empty",
"selfloop_edges",
"nodes_with_selfloops",
"number_of_selfloops",
"path_weight",
"is_path",
]
def nodes(G):
"""Returns an iterator over the graph nodes."""
return G.nodes()
def edges(G, nbunch=None):
"""Returns an edge view of edges incident to nodes in nbunch.
Return all edges if nbunch is unspecified or nbunch=None.
For digraphs, edges=out_edges
"""
return G.edges(nbunch)
def degree(G, nbunch=None, weight=None):
"""Returns a degree view of single node or of nbunch of nodes.
If nbunch is omitted, then return degrees of *all* nodes.
"""
return G.degree(nbunch, weight)
def neighbors(G, n):
"""Returns a list of nodes connected to node n."""
return G.neighbors(n)
def number_of_nodes(G):
"""Returns the number of nodes in the graph."""
return G.number_of_nodes()
def number_of_edges(G):
"""Returns the number of edges in the graph."""
return G.number_of_edges()
def density(G):
r"""Returns the density of a graph.
The density for undirected graphs is
.. math::
d = \frac{2m}{n(n-1)},
and for directed graphs is
.. math::
d = \frac{m}{n(n-1)},
where `n` is the number of nodes and `m` is the number of edges in `G`.
Notes
-----
The density is 0 for a graph without edges and 1 for a complete graph.
The density of multigraphs can be higher than 1.
Self loops are counted in the total number of edges so graphs with self
loops can have density higher than 1.
"""
n = number_of_nodes(G)
m = number_of_edges(G)
if m == 0 or n <= 1:
return 0
d = m / (n * (n - 1))
if not G.is_directed():
d *= 2
return d
def degree_histogram(G):
"""Returns a list of the frequency of each degree value.
Parameters
----------
G : Networkx graph
A graph
Returns
-------
hist : list
A list of frequencies of degrees.
The degree values are the index in the list.
Notes
-----
Note: the bins are width one, hence len(list) can be large
(Order(number_of_edges))
"""
counts = Counter(d for n, d in G.degree())
return [counts.get(i, 0) for i in range(max(counts) + 1)]
def is_directed(G):
"""Return True if graph is directed."""
return G.is_directed()
def frozen(*args, **kwargs):
"""Dummy method for raising errors when trying to modify frozen graphs"""
raise nx.NetworkXError("Frozen graph can't be modified")
def freeze(G):
"""Modify graph to prevent further change by adding or removing
nodes or edges.
Node and edge data can still be modified.
Parameters
----------
G : graph
A NetworkX graph
Examples
--------
>>> G = nx.path_graph(4)
>>> G = nx.freeze(G)
>>> try:
... G.add_edge(4, 5)
... except nx.NetworkXError as err:
... print(str(err))
Frozen graph can't be modified
Notes
-----
To "unfreeze" a graph you must make a copy by creating a new graph object:
>>> graph = nx.path_graph(4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph = nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False
See Also
--------
is_frozen
"""
G.add_node = frozen
G.add_nodes_from = frozen
G.remove_node = frozen
G.remove_nodes_from = frozen
G.add_edge = frozen
G.add_edges_from = frozen
G.add_weighted_edges_from = frozen
G.remove_edge = frozen
G.remove_edges_from = frozen
G.clear = frozen
G.clear_edges = frozen
G.frozen = True
return G
def is_frozen(G):
"""Returns True if graph is frozen.
Parameters
----------
G : graph
A NetworkX graph
See Also
--------
freeze
"""
try:
return G.frozen
except AttributeError:
return False
def add_star(G_to_add_to, nodes_for_star, **attr):
"""Add a star to Graph G_to_add_to.
The first node in `nodes_for_star` is the middle of the star.
It is connected to all other nodes.
Parameters
----------
G_to_add_to : graph
A NetworkX graph
nodes_for_star : iterable container
A container of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.
See Also
--------
add_path, add_cycle
Examples
--------
>>> G = nx.Graph()
>>> nx.add_star(G, [0, 1, 2, 3])
>>> nx.add_star(G, [10, 11, 12], weight=2)
"""
nlist = iter(nodes_for_star)
try:
v = next(nlist)
except StopIteration:
return
G_to_add_to.add_node(v)
edges = ((v, n) for n in nlist)
G_to_add_to.add_edges_from(edges, **attr)
def add_path(G_to_add_to, nodes_for_path, **attr):
"""Add a path to the Graph G_to_add_to.
Parameters
----------
G_to_add_to : graph
A NetworkX graph
nodes_for_path : iterable container
A container of nodes. A path will be constructed from
the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.
See Also
--------
add_star, add_cycle
Examples
--------
>>> G = nx.Graph()
>>> nx.add_path(G, [0, 1, 2, 3])
>>> nx.add_path(G, [10, 11, 12], weight=7)
"""
nlist = iter(nodes_for_path)
try:
first_node = next(nlist)
except StopIteration:
return
G_to_add_to.add_node(first_node)
G_to_add_to.add_edges_from(pairwise(chain((first_node,), nlist)), **attr)
def add_cycle(G_to_add_to, nodes_for_cycle, **attr):
"""Add a cycle to the Graph G_to_add_to.
Parameters
----------
G_to_add_to : graph
A NetworkX graph
nodes_for_cycle: iterable container
A container of nodes. A cycle will be constructed from
the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also
--------
add_path, add_star
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> nx.add_cycle(G, [0, 1, 2, 3])
>>> nx.add_cycle(G, [10, 11, 12], weight=7)
"""
nlist = iter(nodes_for_cycle)
try:
first_node = next(nlist)
except StopIteration:
return
G_to_add_to.add_node(first_node)
G_to_add_to.add_edges_from(
pairwise(chain((first_node,), nlist), cyclic=True), **attr
)
def subgraph(G, nbunch):
"""Returns the subgraph induced on nodes in nbunch.
Parameters
----------
G : graph
A NetworkX graph
nbunch : list, iterable
A container of nodes that will be iterated through once (thus
it should be an iterator or be iterable). Each element of the
container should be a valid node type: any hashable type except
None. If nbunch is None, return all edges data in the graph.
Nodes in nbunch that are not in the graph will be (quietly)
ignored.
Notes
-----
subgraph(G) calls G.subgraph()
"""
return G.subgraph(nbunch)
def induced_subgraph(G, nbunch):
"""Returns a SubGraph view of `G` showing only nodes in nbunch.
The induced subgraph of a graph on a set of nodes N is the
graph with nodes N and edges from G which have both ends in N.
Parameters
----------
G : NetworkX Graph
nbunch : node, container of nodes or None (for all nodes)
Returns
-------
subgraph : SubGraph View
A read-only view of the subgraph in `G` induced by the nodes.
Changes to the graph `G` will be reflected in the view.
Notes
-----
To create a mutable subgraph with its own copies of nodes
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
For an inplace reduction of a graph to a subgraph you can remove nodes:
`G.remove_nodes_from(n in G if n not in set(nbunch))`
If you are going to compute subgraphs of your subgraphs you could
end up with a chain of views that can be very slow once the chain
has about 15 views in it. If they are all induced subgraphs, you
can short-cut the chain by making them all subgraphs of the original
graph. The graph class method `G.subgraph` does this when `G` is
a subgraph. In contrast, this function allows you to choose to build
chains or not, as you wish. The returned subgraph is a view on `G`.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = nx.induced_subgraph(G, [0, 1, 3])
>>> list(H.edges)
[(0, 1)]
>>> list(H.nodes)
[0, 1, 3]
"""
induced_nodes = nx.filters.show_nodes(G.nbunch_iter(nbunch))
return nx.subgraph_view(G, filter_node=induced_nodes)
def edge_subgraph(G, edges):
"""Returns a view of the subgraph induced by the specified edges.
The induced subgraph contains each edge in `edges` and each
node incident to any of those edges.
Parameters
----------
G : NetworkX Graph
edges : iterable
An iterable of edges. Edges not present in `G` are ignored.
Returns
-------
subgraph : SubGraph View
A read-only edge-induced subgraph of `G`.
Changes to `G` are reflected in the view.
Notes
-----
To create a mutable subgraph with its own copies of nodes
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
If you create a subgraph of a subgraph recursively you can end up
with a chain of subgraphs that becomes very slow with about 15
nested subgraph views. Luckily the edge_subgraph filter nests
nicely so you can use the original graph as G in this function
to avoid chains. We do not rule out chains programmatically so
that odd cases like an `edge_subgraph` of a `restricted_view`
can be created.
Examples
--------
>>> G = nx.path_graph(5)
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
>>> list(H.nodes)
[0, 1, 3, 4]
>>> list(H.edges)
[(0, 1), (3, 4)]
"""
nxf = nx.filters
edges = set(edges)
nodes = set()
for e in edges:
nodes.update(e[:2])
induced_nodes = nxf.show_nodes(nodes)
if G.is_multigraph():
if G.is_directed():
induced_edges = nxf.show_multidiedges(edges)
else:
induced_edges = nxf.show_multiedges(edges)
else:
if G.is_directed():
induced_edges = nxf.show_diedges(edges)
else:
induced_edges = nxf.show_edges(edges)
return nx.subgraph_view(G, filter_node=induced_nodes, filter_edge=induced_edges)
def restricted_view(G, nodes, edges):
"""Returns a view of `G` with hidden nodes and edges.
The resulting subgraph filters out node `nodes` and edges `edges`.
Filtered out nodes also filter out any of their edges.
Parameters
----------
G : NetworkX Graph
nodes : iterable
An iterable of nodes. Nodes not present in `G` are ignored.
edges : iterable
An iterable of edges. Edges not present in `G` are ignored.
Returns
-------
subgraph : SubGraph View
A read-only restricted view of `G` filtering out nodes and edges.
Changes to `G` are reflected in the view.
Notes
-----
To create a mutable subgraph with its own copies of nodes
edges and attributes use `subgraph.copy()` or `Graph(subgraph)`
If you create a subgraph of a subgraph recursively you may end up
with a chain of subgraph views. Such chains can get quite slow
for lengths near 15. To avoid long chains, try to make your subgraph
based on the original graph. We do not rule out chains programmatically
so that odd cases like an `edge_subgraph` of a `restricted_view`
can be created.
Examples
--------
>>> G = nx.path_graph(5)
>>> H = nx.restricted_view(G, [0], [(1, 2), (3, 4)])
>>> list(H.nodes)
[1, 2, 3, 4]
>>> list(H.edges)
[(2, 3)]
"""
nxf = nx.filters
hide_nodes = nxf.hide_nodes(nodes)
if G.is_multigraph():
if G.is_directed():
hide_edges = nxf.hide_multidiedges(edges)
else:
hide_edges = nxf.hide_multiedges(edges)
else:
if G.is_directed():
hide_edges = nxf.hide_diedges(edges)
else:
hide_edges = nxf.hide_edges(edges)
return nx.subgraph_view(G, filter_node=hide_nodes, filter_edge=hide_edges)
def to_directed(graph):
"""Returns a directed view of the graph `graph`.
Identical to graph.to_directed(as_view=True)
Note that graph.to_directed defaults to `as_view=False`
while this function always provides a view.
"""
return graph.to_directed(as_view=True)
def to_undirected(graph):
"""Returns an undirected view of the graph `graph`.
Identical to graph.to_undirected(as_view=True)
Note that graph.to_undirected defaults to `as_view=False`
while this function always provides a view.
"""
return graph.to_undirected(as_view=True)
def create_empty_copy(G, with_data=True):
"""Returns a copy of the graph G with all of the edges removed.
Parameters
----------
G : graph
A NetworkX graph
with_data : bool (default=True)
Propagate Graph and Nodes data to the new graph.
See Also
--------
empty_graph
"""
H = G.__class__()
H.add_nodes_from(G.nodes(data=with_data))
if with_data:
H.graph.update(G.graph)
return H
def set_node_attributes(G, values, name=None):
"""Sets node attributes from a given value or dictionary of values.
.. Warning:: The call order of arguments `values` and `name`
switched between v1.x & v2.x.
Parameters
----------
G : NetworkX Graph
values : scalar value, dict-like
What the node attribute should be set to. If `values` is
not a dictionary, then it is treated as a single attribute value
that is then applied to every node in `G`. This means that if
you provide a mutable object, like a list, updates to that object
will be reflected in the node attribute for every node.
The attribute name will be `name`.
If `values` is a dict or a dict of dict, it should be keyed
by node to either an attribute value or a dict of attribute key/value
pairs used to update the node's attributes.
name : string (optional, default=None)
Name of the node attribute to set if values is a scalar.
Examples
--------
After computing some property of the nodes of a graph, you may want
to assign a node attribute to store the value of that property for
each node::
>>> G = nx.path_graph(3)
>>> bb = nx.betweenness_centrality(G)
>>> isinstance(bb, dict)
True
>>> nx.set_node_attributes(G, bb, "betweenness")
>>> G.nodes[1]["betweenness"]
1.0
If you provide a list as the second argument, updates to the list
will be reflected in the node attribute for each node::
>>> G = nx.path_graph(3)
>>> labels = []
>>> nx.set_node_attributes(G, labels, "labels")
>>> labels.append("foo")
>>> G.nodes[0]["labels"]
['foo']
>>> G.nodes[1]["labels"]
['foo']
>>> G.nodes[2]["labels"]
['foo']
If you provide a dictionary of dictionaries as the second argument,
the outer dictionary is assumed to be keyed by node to an inner
dictionary of node attributes for that node::
>>> G = nx.path_graph(3)
>>> attrs = {0: {"attr1": 20, "attr2": "nothing"}, 1: {"attr2": 3}}
>>> nx.set_node_attributes(G, attrs)
>>> G.nodes[0]["attr1"]
20
>>> G.nodes[0]["attr2"]
'nothing'
>>> G.nodes[1]["attr2"]
3
>>> G.nodes[2]
{}
Note that if the dictionary contains nodes that are not in `G`, the
values are silently ignored::
>>> G = nx.Graph()
>>> G.add_node(0)
>>> nx.set_node_attributes(G, {0: "red", 1: "blue"}, name="color")
>>> G.nodes[0]["color"]
'red'
>>> 1 in G.nodes
False
"""
# Set node attributes based on type of `values`
if name is not None: # `values` must not be a dict of dict
try: # `values` is a dict
for n, v in values.items():
try:
G.nodes[n][name] = values[n]
except KeyError:
pass
except AttributeError: # `values` is a constant
for n in G:
G.nodes[n][name] = values
else: # `values` must be dict of dict
for n, d in values.items():
try:
G.nodes[n].update(d)
except KeyError:
pass
def get_node_attributes(G, name, default=None):
"""Get node attributes from graph
Parameters
----------
G : NetworkX Graph
name : string
Attribute name
default: object (default=None)
Default value of the node attribute if there is no value set for that
node in graph. If `None` then nodes without this attribute are not
included in the returned dict.
Returns
-------
Dictionary of attributes keyed by node.
Examples
--------
>>> G = nx.Graph()
>>> G.add_nodes_from([1, 2, 3], color="red")
>>> color = nx.get_node_attributes(G, "color")
>>> color[1]
'red'
>>> G.add_node(4)
>>> color = nx.get_node_attributes(G, "color", default="yellow")
>>> color[4]
'yellow'
"""
if default is not None:
return {n: d.get(name, default) for n, d in G.nodes.items()}
return {n: d[name] for n, d in G.nodes.items() if name in d}
def set_edge_attributes(G, values, name=None):
"""Sets edge attributes from a given value or dictionary of values.
.. Warning:: The call order of arguments `values` and `name`
switched between v1.x & v2.x.
Parameters
----------
G : NetworkX Graph
values : scalar value, dict-like
What the edge attribute should be set to. If `values` is
not a dictionary, then it is treated as a single attribute value
that is then applied to every edge in `G`. This means that if
you provide a mutable object, like a list, updates to that object
will be reflected in the edge attribute for each edge. The attribute
name will be `name`.
If `values` is a dict or a dict of dict, it should be keyed
by edge tuple to either an attribute value or a dict of attribute
key/value pairs used to update the edge's attributes.
For multigraphs, the edge tuples must be of the form ``(u, v, key)``,
where `u` and `v` are nodes and `key` is the edge key.
For non-multigraphs, the keys must be tuples of the form ``(u, v)``.
name : string (optional, default=None)
Name of the edge attribute to set if values is a scalar.
Examples
--------
After computing some property of the edges of a graph, you may want
to assign a edge attribute to store the value of that property for
each edge::
>>> G = nx.path_graph(3)
>>> bb = nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G, bb, "betweenness")
>>> G.edges[1, 2]["betweenness"]
2.0
If you provide a list as the second argument, updates to the list
will be reflected in the edge attribute for each edge::
>>> labels = []
>>> nx.set_edge_attributes(G, labels, "labels")
>>> labels.append("foo")
>>> G.edges[0, 1]["labels"]
['foo']
>>> G.edges[1, 2]["labels"]
['foo']
If you provide a dictionary of dictionaries as the second argument,
the entire dictionary will be used to update edge attributes::
>>> G = nx.path_graph(3)
>>> attrs = {(0, 1): {"attr1": 20, "attr2": "nothing"}, (1, 2): {"attr2": 3}}
>>> nx.set_edge_attributes(G, attrs)
>>> G[0][1]["attr1"]
20
>>> G[0][1]["attr2"]
'nothing'
>>> G[1][2]["attr2"]
3
The attributes of one Graph can be used to set those of another.
>>> H = nx.path_graph(3)
>>> nx.set_edge_attributes(H, G.edges)
Note that if the dict contains edges that are not in `G`, they are
silently ignored::
>>> G = nx.Graph([(0, 1)])
>>> nx.set_edge_attributes(G, {(1, 2): {"weight": 2.0}})
>>> (1, 2) in G.edges()
False
For multigraphs, the `values` dict is expected to be keyed by 3-tuples
including the edge key::
>>> MG = nx.MultiGraph()
>>> edges = [(0, 1), (0, 1)]
>>> MG.add_edges_from(edges) # Returns list of edge keys
[0, 1]
>>> attributes = {(0, 1, 0): {"cost": 21}, (0, 1, 1): {"cost": 7}}
>>> nx.set_edge_attributes(MG, attributes)
>>> MG[0][1][0]["cost"]
21
>>> MG[0][1][1]["cost"]
7
If MultiGraph attributes are desired for a Graph, you must convert the 3-tuple
multiedge to a 2-tuple edge and the last multiedge's attribute value will
overwrite the previous values. Continuing from the previous case we get::
>>> H = nx.path_graph([0, 1, 2])
>>> nx.set_edge_attributes(H, {(u, v): ed for u, v, ed in MG.edges.data()})
>>> nx.get_edge_attributes(H, "cost")
{(0, 1): 7}
"""
if name is not None:
# `values` does not contain attribute names
try:
# if `values` is a dict using `.items()` => {edge: value}
if G.is_multigraph():
for (u, v, key), value in values.items():
try:
G[u][v][key][name] = value
except KeyError:
pass
else:
for (u, v), value in values.items():
try:
G[u][v][name] = value
except KeyError:
pass
except AttributeError:
# treat `values` as a constant
for u, v, data in G.edges(data=True):
data[name] = values
else:
# `values` consists of doct-of-dict {edge: {attr: value}} shape
if G.is_multigraph():
for (u, v, key), d in values.items():
try:
G[u][v][key].update(d)
except KeyError:
pass
else:
for (u, v), d in values.items():
try:
G[u][v].update(d)
except KeyError:
pass
def get_edge_attributes(G, name, default=None):
"""Get edge attributes from graph
Parameters
----------
G : NetworkX Graph
name : string
Attribute name
default: object (default=None)
Default value of the edge attribute if there is no value set for that
edge in graph. If `None` then edges without this attribute are not
included in the returned dict.
Returns
-------
Dictionary of attributes keyed by edge. For (di)graphs, the keys are
2-tuples of the form: (u, v). For multi(di)graphs, the keys are 3-tuples of
the form: (u, v, key).
Examples
--------
>>> G = nx.Graph()
>>> nx.add_path(G, [1, 2, 3], color="red")
>>> color = nx.get_edge_attributes(G, "color")
>>> color[(1, 2)]
'red'
>>> G.add_edge(3, 4)
>>> color = nx.get_edge_attributes(G, "color", default="yellow")
>>> color[(3, 4)]
'yellow'
"""
if G.is_multigraph():
edges = G.edges(keys=True, data=True)
else:
edges = G.edges(data=True)
if default is not None:
return {x[:-1]: x[-1].get(name, default) for x in edges}
return {x[:-1]: x[-1][name] for x in edges if name in x[-1]}
def all_neighbors(graph, node):
"""Returns all of the neighbors of a node in the graph.
If the graph is directed returns predecessors as well as successors.
Parameters
----------
graph : NetworkX graph
Graph to find neighbors.
node : node
The node whose neighbors will be returned.
Returns
-------
neighbors : iterator
Iterator of neighbors
"""
if graph.is_directed():
values = chain(graph.predecessors(node), graph.successors(node))
else:
values = graph.neighbors(node)
return values
def non_neighbors(graph, node):
"""Returns the non-neighbors of the node in the graph.
Parameters
----------
graph : NetworkX graph
Graph to find neighbors.
node : node
The node whose neighbors will be returned.
Returns
-------
non_neighbors : iterator
Iterator of nodes in the graph that are not neighbors of the node.
"""
nbors = set(neighbors(graph, node)) | {node}
return (nnode for nnode in graph if nnode not in nbors)
def non_edges(graph):
"""Returns the nonexistent edges in the graph.
Parameters
----------
graph : NetworkX graph.
Graph to find nonexistent edges.
Returns
-------
non_edges : iterator
Iterator of edges that are not in the graph.
"""
if graph.is_directed():
for u in graph:
for v in non_neighbors(graph, u):
yield (u, v)
else:
nodes = set(graph)
while nodes:
u = nodes.pop()
for v in nodes - set(graph[u]):
yield (u, v)
@not_implemented_for("directed")
def common_neighbors(G, u, v):
"""Returns the common neighbors of two nodes in a graph.
Parameters
----------
G : graph
A NetworkX undirected graph.
u, v : nodes
Nodes in the graph.
Returns
-------
cnbors : iterator
Iterator of common neighbors of u and v in the graph.
Raises
------
NetworkXError
If u or v is not a node in the graph.
Examples
--------
>>> G = nx.complete_graph(5)
>>> sorted(nx.common_neighbors(G, 0, 1))
[2, 3, 4]
"""
if u not in G:
raise nx.NetworkXError("u is not in the graph.")
if v not in G:
raise nx.NetworkXError("v is not in the graph.")
# Return a generator explicitly instead of yielding so that the above
# checks are executed eagerly.
return (w for w in G[u] if w in G[v] and w not in (u, v))
def is_weighted(G, edge=None, weight="weight"):
"""Returns True if `G` has weighted edges.
Parameters
----------
G : graph
A NetworkX graph.
edge : tuple, optional
A 2-tuple specifying the only edge in `G` that will be tested. If
None, then every edge in `G` is tested.
weight: string, optional
The attribute name used to query for edge weights.
Returns
-------
bool
A boolean signifying if `G`, or the specified edge, is weighted.
Raises
------
NetworkXError
If the specified edge does not exist.
Examples
--------
>>> G = nx.path_graph(4)
>>> nx.is_weighted(G)
False
>>> nx.is_weighted(G, (2, 3))
False
>>> G = nx.DiGraph()
>>> G.add_edge(1, 2, weight=1)
>>> nx.is_weighted(G)
True
"""
if edge is not None:
data = G.get_edge_data(*edge)
if data is None:
msg = f"Edge {edge!r} does not exist."
raise nx.NetworkXError(msg)
return weight in data
if is_empty(G):
# Special handling required since: all([]) == True
return False
return all(weight in data for u, v, data in G.edges(data=True))
def is_negatively_weighted(G, edge=None, weight="weight"):
"""Returns True if `G` has negatively weighted edges.
Parameters
----------
G : graph
A NetworkX graph.
edge : tuple, optional
A 2-tuple specifying the only edge in `G` that will be tested. If
None, then every edge in `G` is tested.
weight: string, optional
The attribute name used to query for edge weights.
Returns
-------
bool
A boolean signifying if `G`, or the specified edge, is negatively
weighted.
Raises
------
NetworkXError
If the specified edge does not exist.
Examples
--------
>>> G = nx.Graph()
>>> G.add_edges_from([(1, 3), (2, 4), (2, 6)])
>>> G.add_edge(1, 2, weight=4)
>>> nx.is_negatively_weighted(G, (1, 2))
False
>>> G[2][4]["weight"] = -2
>>> nx.is_negatively_weighted(G)
True
>>> G = nx.DiGraph()
>>> edges = [("0", "3", 3), ("0", "1", -5), ("1", "0", -2)]
>>> G.add_weighted_edges_from(edges)
>>> nx.is_negatively_weighted(G)
True
"""
if edge is not None:
data = G.get_edge_data(*edge)
if data is None:
msg = f"Edge {edge!r} does not exist."
raise nx.NetworkXError(msg)
return weight in data and data[weight] < 0
return any(weight in data and data[weight] < 0 for u, v, data in G.edges(data=True))
def is_empty(G):
"""Returns True if `G` has no edges.
Parameters
----------
G : graph
A NetworkX graph.
Returns
-------
bool
True if `G` has no edges, and False otherwise.
Notes
-----
An empty graph can have nodes but not edges. The empty graph with zero
nodes is known as the null graph. This is an $O(n)$ operation where n
is the number of nodes in the graph.
"""
return not any(G.adj.values())
def nodes_with_selfloops(G):
"""Returns an iterator over nodes with self loops.
A node with a self loop has an edge with both ends adjacent
to that node.
Returns
-------
nodelist : iterator
A iterator over nodes with self loops.
See Also
--------
selfloop_edges, number_of_selfloops
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1, 1)
>>> G.add_edge(1, 2)
>>> list(nx.nodes_with_selfloops(G))
[1]
"""
return (n for n, nbrs in G.adj.items() if n in nbrs)
def selfloop_edges(G, data=False, keys=False, default=None):
"""Returns an iterator over selfloop edges.
A selfloop edge has the same node at both ends.
Parameters
----------
G : graph
A NetworkX graph.
data : string or bool, optional (default=False)
Return selfloop edges as two tuples (u, v) (data=False)
or three-tuples (u, v, datadict) (data=True)
or three-tuples (u, v, datavalue) (data='attrname')
keys : bool, optional (default=False)
If True, return edge keys with each edge.
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
edgeiter : iterator over edge tuples
An iterator over all selfloop edges.
See Also
--------
nodes_with_selfloops, number_of_selfloops
Examples
--------
>>> G = nx.MultiGraph() # or Graph, DiGraph, MultiDiGraph, etc
>>> ekey = G.add_edge(1, 1)
>>> ekey = G.add_edge(1, 2)
>>> list(nx.selfloop_edges(G))
[(1, 1)]
>>> list(nx.selfloop_edges(G, data=True))
[(1, 1, {})]
>>> list(nx.selfloop_edges(G, keys=True))
[(1, 1, 0)]
>>> list(nx.selfloop_edges(G, keys=True, data=True))
[(1, 1, 0, {})]
"""
if data is True:
if G.is_multigraph():
if keys is True:
return (
(n, n, k, d)
for n, nbrs in G.adj.items()
if n in nbrs
for k, d in nbrs[n].items()
)
else:
return (
(n, n, d)
for n, nbrs in G.adj.items()
if n in nbrs
for d in nbrs[n].values()
)
else:
return ((n, n, nbrs[n]) for n, nbrs in G.adj.items() if n in nbrs)
elif data is not False:
if G.is_multigraph():
if keys is True:
return (
(n, n, k, d.get(data, default))
for n, nbrs in G.adj.items()
if n in nbrs
for k, d in nbrs[n].items()
)
else:
return (
(n, n, d.get(data, default))
for n, nbrs in G.adj.items()
if n in nbrs
for d in nbrs[n].values()
)
else:
return (
(n, n, nbrs[n].get(data, default))
for n, nbrs in G.adj.items()
if n in nbrs
)
else:
if G.is_multigraph():
if keys is True:
return (
(n, n, k) for n, nbrs in G.adj.items() if n in nbrs for k in nbrs[n]
)
else:
return (
(n, n)
for n, nbrs in G.adj.items()
if n in nbrs
for i in range(len(nbrs[n])) # for easy edge removal (#4068)
)
else:
return ((n, n) for n, nbrs in G.adj.items() if n in nbrs)
def number_of_selfloops(G):
"""Returns the number of selfloop edges.
A selfloop edge has the same node at both ends.
Returns
-------
nloops : int
The number of selfloops.
See Also
--------
nodes_with_selfloops, selfloop_edges
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1, 1)
>>> G.add_edge(1, 2)
>>> nx.number_of_selfloops(G)
1
"""
return sum(1 for _ in nx.selfloop_edges(G))
def is_path(G, path):
"""Returns whether or not the specified path exists.
For it to return True, every node on the path must exist and
each consecutive pair must be connected via one or more edges.
Parameters
----------
G : graph
A NetworkX graph.
path : list
A list of nodes which defines the path to traverse
Returns
-------
bool
True if `path` is a valid path in `G`
"""
return all((node in G and nbr in G[node]) for node, nbr in nx.utils.pairwise(path))
def path_weight(G, path, weight):
"""Returns total cost associated with specified path and weight
Parameters
----------
G : graph
A NetworkX graph.
path: list
A list of node labels which defines the path to traverse
weight: string
A string indicating which edge attribute to use for path cost
Returns
-------
cost: int or float
An integer or a float representing the total cost with respect to the
specified weight of the specified path
Raises
------
NetworkXNoPath
If the specified edge does not exist.
"""
multigraph = G.is_multigraph()
cost = 0
if not nx.is_path(G, path):
raise nx.NetworkXNoPath("path does not exist")
for node, nbr in nx.utils.pairwise(path):
if multigraph:
cost += min(v[weight] for v in G[node][nbr].values())
else:
cost += G[node][nbr][weight]
return cost
|