File size: 11,466 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import pytest

import networkx as nx
from networkx.utils import edges_equal, nodes_equal

# Note: SubGraph views are not tested here. They have their own testing file


class TestReverseView:
    def setup_method(self):
        self.G = nx.path_graph(9, create_using=nx.DiGraph())
        self.rv = nx.reverse_view(self.G)

    def test_pickle(self):
        import pickle

        rv = self.rv
        prv = pickle.loads(pickle.dumps(rv, -1))
        assert rv._node == prv._node
        assert rv._adj == prv._adj
        assert rv.graph == prv.graph

    def test_contains(self):
        assert (2, 3) in self.G.edges
        assert (3, 2) not in self.G.edges
        assert (2, 3) not in self.rv.edges
        assert (3, 2) in self.rv.edges

    def test_iter(self):
        expected = sorted(tuple(reversed(e)) for e in self.G.edges)
        assert sorted(self.rv.edges) == expected

    def test_exceptions(self):
        G = nx.Graph()
        pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, G)

    def test_subclass(self):
        class MyGraph(nx.DiGraph):
            def my_method(self):
                return "me"

            def to_directed_class(self):
                return MyGraph()

        M = MyGraph()
        M.add_edge(1, 2)
        RM = nx.reverse_view(M)
        print("RM class", RM.__class__)
        RMC = RM.copy()
        print("RMC class", RMC.__class__)
        print(RMC.edges)
        assert RMC.has_edge(2, 1)
        assert RMC.my_method() == "me"


class TestMultiReverseView:
    def setup_method(self):
        self.G = nx.path_graph(9, create_using=nx.MultiDiGraph())
        self.G.add_edge(4, 5)
        self.rv = nx.reverse_view(self.G)

    def test_pickle(self):
        import pickle

        rv = self.rv
        prv = pickle.loads(pickle.dumps(rv, -1))
        assert rv._node == prv._node
        assert rv._adj == prv._adj
        assert rv.graph == prv.graph

    def test_contains(self):
        assert (2, 3, 0) in self.G.edges
        assert (3, 2, 0) not in self.G.edges
        assert (2, 3, 0) not in self.rv.edges
        assert (3, 2, 0) in self.rv.edges
        assert (5, 4, 1) in self.rv.edges
        assert (4, 5, 1) not in self.rv.edges

    def test_iter(self):
        expected = sorted((v, u, k) for u, v, k in self.G.edges)
        assert sorted(self.rv.edges) == expected

    def test_exceptions(self):
        MG = nx.MultiGraph(self.G)
        pytest.raises(nx.NetworkXNotImplemented, nx.reverse_view, MG)


def test_generic_multitype():
    nxg = nx.graphviews
    G = nx.DiGraph([(1, 2)])
    with pytest.raises(nx.NetworkXError):
        nxg.generic_graph_view(G, create_using=nx.MultiGraph)
    G = nx.MultiDiGraph([(1, 2)])
    with pytest.raises(nx.NetworkXError):
        nxg.generic_graph_view(G, create_using=nx.DiGraph)


class TestToDirected:
    def setup_method(self):
        self.G = nx.path_graph(9)
        self.dv = nx.to_directed(self.G)
        self.MG = nx.path_graph(9, create_using=nx.MultiGraph())
        self.Mdv = nx.to_directed(self.MG)

    def test_directed(self):
        assert not self.G.is_directed()
        assert self.dv.is_directed()

    def test_already_directed(self):
        dd = nx.to_directed(self.dv)
        Mdd = nx.to_directed(self.Mdv)
        assert edges_equal(dd.edges, self.dv.edges)
        assert edges_equal(Mdd.edges, self.Mdv.edges)

    def test_pickle(self):
        import pickle

        dv = self.dv
        pdv = pickle.loads(pickle.dumps(dv, -1))
        assert dv._node == pdv._node
        assert dv._succ == pdv._succ
        assert dv._pred == pdv._pred
        assert dv.graph == pdv.graph

    def test_contains(self):
        assert (2, 3) in self.G.edges
        assert (3, 2) in self.G.edges
        assert (2, 3) in self.dv.edges
        assert (3, 2) in self.dv.edges

    def test_iter(self):
        revd = [tuple(reversed(e)) for e in self.G.edges]
        expected = sorted(list(self.G.edges) + revd)
        assert sorted(self.dv.edges) == expected


class TestToUndirected:
    def setup_method(self):
        self.DG = nx.path_graph(9, create_using=nx.DiGraph())
        self.uv = nx.to_undirected(self.DG)
        self.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
        self.Muv = nx.to_undirected(self.MDG)

    def test_directed(self):
        assert self.DG.is_directed()
        assert not self.uv.is_directed()

    def test_already_directed(self):
        uu = nx.to_undirected(self.uv)
        Muu = nx.to_undirected(self.Muv)
        assert edges_equal(uu.edges, self.uv.edges)
        assert edges_equal(Muu.edges, self.Muv.edges)

    def test_pickle(self):
        import pickle

        uv = self.uv
        puv = pickle.loads(pickle.dumps(uv, -1))
        assert uv._node == puv._node
        assert uv._adj == puv._adj
        assert uv.graph == puv.graph
        assert hasattr(uv, "_graph")

    def test_contains(self):
        assert (2, 3) in self.DG.edges
        assert (3, 2) not in self.DG.edges
        assert (2, 3) in self.uv.edges
        assert (3, 2) in self.uv.edges

    def test_iter(self):
        expected = sorted(self.DG.edges)
        assert sorted(self.uv.edges) == expected


class TestChainsOfViews:
    @classmethod
    def setup_class(cls):
        cls.G = nx.path_graph(9)
        cls.DG = nx.path_graph(9, create_using=nx.DiGraph())
        cls.MG = nx.path_graph(9, create_using=nx.MultiGraph())
        cls.MDG = nx.path_graph(9, create_using=nx.MultiDiGraph())
        cls.Gv = nx.to_undirected(cls.DG)
        cls.DGv = nx.to_directed(cls.G)
        cls.MGv = nx.to_undirected(cls.MDG)
        cls.MDGv = nx.to_directed(cls.MG)
        cls.Rv = cls.DG.reverse()
        cls.MRv = cls.MDG.reverse()
        cls.graphs = [
            cls.G,
            cls.DG,
            cls.MG,
            cls.MDG,
            cls.Gv,
            cls.DGv,
            cls.MGv,
            cls.MDGv,
            cls.Rv,
            cls.MRv,
        ]
        for G in cls.graphs:
            G.edges, G.nodes, G.degree

    def test_pickle(self):
        import pickle

        for G in self.graphs:
            H = pickle.loads(pickle.dumps(G, -1))
            assert edges_equal(H.edges, G.edges)
            assert nodes_equal(H.nodes, G.nodes)

    def test_subgraph_of_subgraph(self):
        SGv = nx.subgraph(self.G, range(3, 7))
        SDGv = nx.subgraph(self.DG, range(3, 7))
        SMGv = nx.subgraph(self.MG, range(3, 7))
        SMDGv = nx.subgraph(self.MDG, range(3, 7))
        for G in self.graphs + [SGv, SDGv, SMGv, SMDGv]:
            SG = nx.induced_subgraph(G, [4, 5, 6])
            assert list(SG) == [4, 5, 6]
            SSG = SG.subgraph([6, 7])
            assert list(SSG) == [6]
            # subgraph-subgraph chain is short-cut in base class method
            assert SSG._graph is G

    def test_restricted_induced_subgraph_chains(self):
        """Test subgraph chains that both restrict and show nodes/edges.

        A restricted_view subgraph should allow induced subgraphs using
        G.subgraph that automagically without a chain (meaning the result
        is a subgraph view of the original graph not a subgraph-of-subgraph.
        """
        hide_nodes = [3, 4, 5]
        hide_edges = [(6, 7)]
        RG = nx.restricted_view(self.G, hide_nodes, hide_edges)
        nodes = [4, 5, 6, 7, 8]
        SG = nx.induced_subgraph(RG, nodes)
        SSG = RG.subgraph(nodes)
        assert RG._graph is self.G
        assert SSG._graph is self.G
        assert SG._graph is RG
        assert edges_equal(SG.edges, SSG.edges)
        # should be same as morphing the graph
        CG = self.G.copy()
        CG.remove_nodes_from(hide_nodes)
        CG.remove_edges_from(hide_edges)
        assert edges_equal(CG.edges(nodes), SSG.edges)
        CG.remove_nodes_from([0, 1, 2, 3])
        assert edges_equal(CG.edges, SSG.edges)
        # switch order: subgraph first, then restricted view
        SSSG = self.G.subgraph(nodes)
        RSG = nx.restricted_view(SSSG, hide_nodes, hide_edges)
        assert RSG._graph is not self.G
        assert edges_equal(RSG.edges, CG.edges)

    def test_subgraph_copy(self):
        for origG in self.graphs:
            G = nx.Graph(origG)
            SG = G.subgraph([4, 5, 6])
            H = SG.copy()
            assert type(G) == type(H)

    def test_subgraph_todirected(self):
        SG = nx.induced_subgraph(self.G, [4, 5, 6])
        SSG = SG.to_directed()
        assert sorted(SSG) == [4, 5, 6]
        assert sorted(SSG.edges) == [(4, 5), (5, 4), (5, 6), (6, 5)]

    def test_subgraph_toundirected(self):
        SG = nx.induced_subgraph(self.G, [4, 5, 6])
        SSG = SG.to_undirected()
        assert list(SSG) == [4, 5, 6]
        assert sorted(SSG.edges) == [(4, 5), (5, 6)]

    def test_reverse_subgraph_toundirected(self):
        G = self.DG.reverse(copy=False)
        SG = G.subgraph([4, 5, 6])
        SSG = SG.to_undirected()
        assert list(SSG) == [4, 5, 6]
        assert sorted(SSG.edges) == [(4, 5), (5, 6)]

    def test_reverse_reverse_copy(self):
        G = self.DG.reverse(copy=False)
        H = G.reverse(copy=True)
        assert H.nodes == self.DG.nodes
        assert H.edges == self.DG.edges
        G = self.MDG.reverse(copy=False)
        H = G.reverse(copy=True)
        assert H.nodes == self.MDG.nodes
        assert H.edges == self.MDG.edges

    def test_subgraph_edgesubgraph_toundirected(self):
        G = self.G.copy()
        SG = G.subgraph([4, 5, 6])
        SSG = SG.edge_subgraph([(4, 5), (5, 4)])
        USSG = SSG.to_undirected()
        assert list(USSG) == [4, 5]
        assert sorted(USSG.edges) == [(4, 5)]

    def test_copy_subgraph(self):
        G = self.G.copy()
        SG = G.subgraph([4, 5, 6])
        CSG = SG.copy(as_view=True)
        DCSG = SG.copy(as_view=False)
        assert hasattr(CSG, "_graph")  # is a view
        assert not hasattr(DCSG, "_graph")  # not a view

    def test_copy_disubgraph(self):
        G = self.DG.copy()
        SG = G.subgraph([4, 5, 6])
        CSG = SG.copy(as_view=True)
        DCSG = SG.copy(as_view=False)
        assert hasattr(CSG, "_graph")  # is a view
        assert not hasattr(DCSG, "_graph")  # not a view

    def test_copy_multidisubgraph(self):
        G = self.MDG.copy()
        SG = G.subgraph([4, 5, 6])
        CSG = SG.copy(as_view=True)
        DCSG = SG.copy(as_view=False)
        assert hasattr(CSG, "_graph")  # is a view
        assert not hasattr(DCSG, "_graph")  # not a view

    def test_copy_multisubgraph(self):
        G = self.MG.copy()
        SG = G.subgraph([4, 5, 6])
        CSG = SG.copy(as_view=True)
        DCSG = SG.copy(as_view=False)
        assert hasattr(CSG, "_graph")  # is a view
        assert not hasattr(DCSG, "_graph")  # not a view

    def test_copy_of_view(self):
        G = nx.MultiGraph(self.MGv)
        assert G.__class__.__name__ == "MultiGraph"
        G = G.copy(as_view=True)
        assert G.__class__.__name__ == "MultiGraph"

    def test_subclass(self):
        class MyGraph(nx.DiGraph):
            def my_method(self):
                return "me"

            def to_directed_class(self):
                return MyGraph()

        for origG in self.graphs:
            G = MyGraph(origG)
            SG = G.subgraph([4, 5, 6])
            H = SG.copy()
            assert SG.my_method() == "me"
            assert H.my_method() == "me"
            assert 3 not in H or 3 in SG