File size: 15,977 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
"""Functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the
graph constructor.  The constructor calls the to_networkx_graph() function
which attempts to guess the input type and convert it automatically.

Examples
--------
Create a graph with a single edge from a dictionary of dictionaries

>>> d = {0: {1: 1}}  # dict-of-dicts single edge (0,1)
>>> G = nx.Graph(d)

See Also
--------
nx_agraph, nx_pydot
"""
import warnings
from collections.abc import Collection, Generator, Iterator

import networkx as nx

__all__ = [
    "to_networkx_graph",
    "from_dict_of_dicts",
    "to_dict_of_dicts",
    "from_dict_of_lists",
    "to_dict_of_lists",
    "from_edgelist",
    "to_edgelist",
]


def to_networkx_graph(data, create_using=None, multigraph_input=False):
    """Make a NetworkX graph from a known data structure.

    The preferred way to call this is automatically
    from the class constructor

    >>> d = {0: {1: {"weight": 1}}}  # dict-of-dicts single edge (0,1)
    >>> G = nx.Graph(d)

    instead of the equivalent

    >>> G = nx.from_dict_of_dicts(d)

    Parameters
    ----------
    data : object to be converted

        Current known types are:
         any NetworkX graph
         dict-of-dicts
         dict-of-lists
         container (e.g. set, list, tuple) of edges
         iterator (e.g. itertools.chain) that produces edges
         generator of edges
         Pandas DataFrame (row per edge)
         2D numpy array
         scipy sparse array
         pygraphviz agraph

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    multigraph_input : bool (default False)
        If True and  data is a dict_of_dicts,
        try to create a multigraph assuming dict_of_dict_of_lists.
        If data and create_using are both multigraphs then create
        a multigraph from a multigraph.

    """
    # NX graph
    if hasattr(data, "adj"):
        try:
            result = from_dict_of_dicts(
                data.adj,
                create_using=create_using,
                multigraph_input=data.is_multigraph(),
            )
            # data.graph should be dict-like
            result.graph.update(data.graph)
            # data.nodes should be dict-like
            # result.add_node_from(data.nodes.items()) possible but
            # for custom node_attr_dict_factory which may be hashable
            # will be unexpected behavior
            for n, dd in data.nodes.items():
                result._node[n].update(dd)
            return result
        except Exception as err:
            raise nx.NetworkXError("Input is not a correct NetworkX graph.") from err

    # pygraphviz  agraph
    if hasattr(data, "is_strict"):
        try:
            return nx.nx_agraph.from_agraph(data, create_using=create_using)
        except Exception as err:
            raise nx.NetworkXError("Input is not a correct pygraphviz graph.") from err

    # dict of dicts/lists
    if isinstance(data, dict):
        try:
            return from_dict_of_dicts(
                data, create_using=create_using, multigraph_input=multigraph_input
            )
        except Exception as err1:
            if multigraph_input is True:
                raise nx.NetworkXError(
                    f"converting multigraph_input raised:\n{type(err1)}: {err1}"
                )
            try:
                return from_dict_of_lists(data, create_using=create_using)
            except Exception as err2:
                raise TypeError("Input is not known type.") from err2

    # Pandas DataFrame
    try:
        import pandas as pd

        if isinstance(data, pd.DataFrame):
            if data.shape[0] == data.shape[1]:
                try:
                    return nx.from_pandas_adjacency(data, create_using=create_using)
                except Exception as err:
                    msg = "Input is not a correct Pandas DataFrame adjacency matrix."
                    raise nx.NetworkXError(msg) from err
            else:
                try:
                    return nx.from_pandas_edgelist(
                        data, edge_attr=True, create_using=create_using
                    )
                except Exception as err:
                    msg = "Input is not a correct Pandas DataFrame edge-list."
                    raise nx.NetworkXError(msg) from err
    except ImportError:
        warnings.warn("pandas not found, skipping conversion test.", ImportWarning)

    # numpy array
    try:
        import numpy as np

        if isinstance(data, np.ndarray):
            try:
                return nx.from_numpy_array(data, create_using=create_using)
            except Exception as err:
                raise nx.NetworkXError(
                    f"Failed to interpret array as an adjacency matrix."
                ) from err
    except ImportError:
        warnings.warn("numpy not found, skipping conversion test.", ImportWarning)

    # scipy sparse array - any format
    try:
        import scipy

        if hasattr(data, "format"):
            try:
                return nx.from_scipy_sparse_array(data, create_using=create_using)
            except Exception as err:
                raise nx.NetworkXError(
                    "Input is not a correct scipy sparse array type."
                ) from err
    except ImportError:
        warnings.warn("scipy not found, skipping conversion test.", ImportWarning)

    # Note: most general check - should remain last in order of execution
    # Includes containers (e.g. list, set, dict, etc.), generators, and
    # iterators (e.g. itertools.chain) of edges

    if isinstance(data, (Collection, Generator, Iterator)):
        try:
            return from_edgelist(data, create_using=create_using)
        except Exception as err:
            raise nx.NetworkXError("Input is not a valid edge list") from err

    raise nx.NetworkXError("Input is not a known data type for conversion.")


@nx._dispatch
def to_dict_of_lists(G, nodelist=None):
    """Returns adjacency representation of graph as a dictionary of lists.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    Notes
    -----
    Completely ignores edge data for MultiGraph and MultiDiGraph.

    """
    if nodelist is None:
        nodelist = G

    d = {}
    for n in nodelist:
        d[n] = [nbr for nbr in G.neighbors(n) if nbr in nodelist]
    return d


@nx._dispatch(graphs=None)
def from_dict_of_lists(d, create_using=None):
    """Returns a graph from a dictionary of lists.

    Parameters
    ----------
    d : dictionary of lists
      A dictionary of lists adjacency representation.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    Examples
    --------
    >>> dol = {0: [1]}  # single edge (0,1)
    >>> G = nx.from_dict_of_lists(dol)

    or

    >>> G = nx.Graph(dol)  # use Graph constructor

    """
    G = nx.empty_graph(0, create_using)
    G.add_nodes_from(d)
    if G.is_multigraph() and not G.is_directed():
        # a dict_of_lists can't show multiedges.  BUT for undirected graphs,
        # each edge shows up twice in the dict_of_lists.
        # So we need to treat this case separately.
        seen = {}
        for node, nbrlist in d.items():
            for nbr in nbrlist:
                if nbr not in seen:
                    G.add_edge(node, nbr)
            seen[node] = 1  # don't allow reverse edge to show up
    else:
        G.add_edges_from(
            ((node, nbr) for node, nbrlist in d.items() for nbr in nbrlist)
        )
    return G


def to_dict_of_dicts(G, nodelist=None, edge_data=None):
    """Returns adjacency representation of graph as a dictionary of dictionaries.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    edge_data : scalar, optional
       If provided, the value of the dictionary will be set to `edge_data` for
       all edges. Usual values could be `1` or `True`. If `edge_data` is
       `None` (the default), the edgedata in `G` is used, resulting in a
       dict-of-dict-of-dicts. If `G` is a MultiGraph, the result will be a
       dict-of-dict-of-dict-of-dicts. See Notes for an approach to customize
       handling edge data. `edge_data` should *not* be a container.

    Returns
    -------
    dod : dict
       A nested dictionary representation of `G`. Note that the level of
       nesting depends on the type of `G` and the value of `edge_data`
       (see Examples).

    See Also
    --------
    from_dict_of_dicts, to_dict_of_lists

    Notes
    -----
    For a more custom approach to handling edge data, try::

        dod = {
            n: {
                nbr: custom(n, nbr, dd) for nbr, dd in nbrdict.items()
            }
            for n, nbrdict in G.adj.items()
        }

    where `custom` returns the desired edge data for each edge between `n` and
    `nbr`, given existing edge data `dd`.

    Examples
    --------
    >>> G = nx.path_graph(3)
    >>> nx.to_dict_of_dicts(G)
    {0: {1: {}}, 1: {0: {}, 2: {}}, 2: {1: {}}}

    Edge data is preserved by default (``edge_data=None``), resulting
    in dict-of-dict-of-dicts where the innermost dictionary contains the
    edge data:

    >>> G = nx.Graph()
    >>> G.add_edges_from(
    ...     [
    ...         (0, 1, {'weight': 1.0}),
    ...         (1, 2, {'weight': 2.0}),
    ...         (2, 0, {'weight': 1.0}),
    ...     ]
    ... )
    >>> d = nx.to_dict_of_dicts(G)
    >>> d  # doctest: +SKIP
    {0: {1: {'weight': 1.0}, 2: {'weight': 1.0}},
     1: {0: {'weight': 1.0}, 2: {'weight': 2.0}},
     2: {1: {'weight': 2.0}, 0: {'weight': 1.0}}}
    >>> d[1][2]['weight']
    2.0

    If `edge_data` is not `None`, edge data in the original graph (if any) is
    replaced:

    >>> d = nx.to_dict_of_dicts(G, edge_data=1)
    >>> d
    {0: {1: 1, 2: 1}, 1: {0: 1, 2: 1}, 2: {1: 1, 0: 1}}
    >>> d[1][2]
    1

    This also applies to MultiGraphs: edge data is preserved by default:

    >>> G = nx.MultiGraph()
    >>> G.add_edge(0, 1, key='a', weight=1.0)
    'a'
    >>> G.add_edge(0, 1, key='b', weight=5.0)
    'b'
    >>> d = nx.to_dict_of_dicts(G)
    >>> d  # doctest: +SKIP
    {0: {1: {'a': {'weight': 1.0}, 'b': {'weight': 5.0}}},
     1: {0: {'a': {'weight': 1.0}, 'b': {'weight': 5.0}}}}
    >>> d[0][1]['b']['weight']
    5.0

    But multi edge data is lost if `edge_data` is not `None`:

    >>> d = nx.to_dict_of_dicts(G, edge_data=10)
    >>> d
    {0: {1: 10}, 1: {0: 10}}
    """
    dod = {}
    if nodelist is None:
        if edge_data is None:
            for u, nbrdict in G.adjacency():
                dod[u] = nbrdict.copy()
        else:  # edge_data is not None
            for u, nbrdict in G.adjacency():
                dod[u] = dod.fromkeys(nbrdict, edge_data)
    else:  # nodelist is not None
        if edge_data is None:
            for u in nodelist:
                dod[u] = {}
                for v, data in ((v, data) for v, data in G[u].items() if v in nodelist):
                    dod[u][v] = data
        else:  # nodelist and edge_data are not None
            for u in nodelist:
                dod[u] = {}
                for v in (v for v in G[u] if v in nodelist):
                    dod[u][v] = edge_data
    return dod


@nx._dispatch(graphs=None)
def from_dict_of_dicts(d, create_using=None, multigraph_input=False):
    """Returns a graph from a dictionary of dictionaries.

    Parameters
    ----------
    d : dictionary of dictionaries
      A dictionary of dictionaries adjacency representation.

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    multigraph_input : bool (default False)
       When True, the dict `d` is assumed
       to be a dict-of-dict-of-dict-of-dict structure keyed by
       node to neighbor to edge keys to edge data for multi-edges.
       Otherwise this routine assumes dict-of-dict-of-dict keyed by
       node to neighbor to edge data.

    Examples
    --------
    >>> dod = {0: {1: {"weight": 1}}}  # single edge (0,1)
    >>> G = nx.from_dict_of_dicts(dod)

    or

    >>> G = nx.Graph(dod)  # use Graph constructor

    """
    G = nx.empty_graph(0, create_using)
    G.add_nodes_from(d)
    # does dict d represent a MultiGraph or MultiDiGraph?
    if multigraph_input:
        if G.is_directed():
            if G.is_multigraph():
                G.add_edges_from(
                    (u, v, key, data)
                    for u, nbrs in d.items()
                    for v, datadict in nbrs.items()
                    for key, data in datadict.items()
                )
            else:
                G.add_edges_from(
                    (u, v, data)
                    for u, nbrs in d.items()
                    for v, datadict in nbrs.items()
                    for key, data in datadict.items()
                )
        else:  # Undirected
            if G.is_multigraph():
                seen = set()  # don't add both directions of undirected graph
                for u, nbrs in d.items():
                    for v, datadict in nbrs.items():
                        if (u, v) not in seen:
                            G.add_edges_from(
                                (u, v, key, data) for key, data in datadict.items()
                            )
                            seen.add((v, u))
            else:
                seen = set()  # don't add both directions of undirected graph
                for u, nbrs in d.items():
                    for v, datadict in nbrs.items():
                        if (u, v) not in seen:
                            G.add_edges_from(
                                (u, v, data) for key, data in datadict.items()
                            )
                            seen.add((v, u))

    else:  # not a multigraph to multigraph transfer
        if G.is_multigraph() and not G.is_directed():
            # d can have both representations u-v, v-u in dict.  Only add one.
            # We don't need this check for digraphs since we add both directions,
            # or for Graph() since it is done implicitly (parallel edges not allowed)
            seen = set()
            for u, nbrs in d.items():
                for v, data in nbrs.items():
                    if (u, v) not in seen:
                        G.add_edge(u, v, key=0)
                        G[u][v][0].update(data)
                    seen.add((v, u))
        else:
            G.add_edges_from(
                ((u, v, data) for u, nbrs in d.items() for v, data in nbrs.items())
            )
    return G


@nx._dispatch(preserve_edge_attrs=True)
def to_edgelist(G, nodelist=None):
    """Returns a list of edges in the graph.

    Parameters
    ----------
    G : graph
       A NetworkX graph

    nodelist : list
       Use only nodes specified in nodelist

    """
    if nodelist is None:
        return G.edges(data=True)
    return G.edges(nodelist, data=True)


@nx._dispatch(graphs=None)
def from_edgelist(edgelist, create_using=None):
    """Returns a graph from a list of edges.

    Parameters
    ----------
    edgelist : list or iterator
      Edge tuples

    create_using : NetworkX graph constructor, optional (default=nx.Graph)
        Graph type to create. If graph instance, then cleared before populated.

    Examples
    --------
    >>> edgelist = [(0, 1)]  # single edge (0,1)
    >>> G = nx.from_edgelist(edgelist)

    or

    >>> G = nx.Graph(edgelist)  # use Graph constructor

    """
    G = nx.empty_graph(0, create_using)
    G.add_edges_from(edgelist)
    return G