File size: 38,829 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
"""
******
Layout
******

Node positioning algorithms for graph drawing.

For `random_layout()` the possible resulting shape
is a square of side [0, scale] (default: [0, 1])
Changing `center` shifts the layout by that amount.

For the other layout routines, the extent is
[center - scale, center + scale] (default: [-1, 1]).

Warning: Most layout routines have only been tested in 2-dimensions.

"""
import networkx as nx
from networkx.utils import np_random_state

__all__ = [
    "bipartite_layout",
    "circular_layout",
    "kamada_kawai_layout",
    "random_layout",
    "rescale_layout",
    "rescale_layout_dict",
    "shell_layout",
    "spring_layout",
    "spectral_layout",
    "planar_layout",
    "fruchterman_reingold_layout",
    "spiral_layout",
    "multipartite_layout",
    "arf_layout",
]


def _process_params(G, center, dim):
    # Some boilerplate code.
    import numpy as np

    if not isinstance(G, nx.Graph):
        empty_graph = nx.Graph()
        empty_graph.add_nodes_from(G)
        G = empty_graph

    if center is None:
        center = np.zeros(dim)
    else:
        center = np.asarray(center)

    if len(center) != dim:
        msg = "length of center coordinates must match dimension of layout"
        raise ValueError(msg)

    return G, center


@np_random_state(3)
def random_layout(G, center=None, dim=2, seed=None):
    """Position nodes uniformly at random in the unit square.

    For every node, a position is generated by choosing each of dim
    coordinates uniformly at random on the interval [0.0, 1.0).

    NumPy (http://scipy.org) is required for this function.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout.

    seed : int, RandomState instance or None  optional (default=None)
        Set the random state for deterministic node layouts.
        If int, `seed` is the seed used by the random number generator,
        if numpy.random.RandomState instance, `seed` is the random
        number generator,
        if None, the random number generator is the RandomState instance used
        by numpy.random.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Examples
    --------
    >>> G = nx.lollipop_graph(4, 3)
    >>> pos = nx.random_layout(G)

    """
    import numpy as np

    G, center = _process_params(G, center, dim)
    pos = seed.rand(len(G), dim) + center
    pos = pos.astype(np.float32)
    pos = dict(zip(G, pos))

    return pos


def circular_layout(G, scale=1, center=None, dim=2):
    # dim=2 only
    """Position nodes on a circle.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout.
        If dim>2, the remaining dimensions are set to zero
        in the returned positions.
        If dim<2, a ValueError is raised.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Raises
    ------
    ValueError
        If dim < 2

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.circular_layout(G)

    Notes
    -----
    This algorithm currently only works in two dimensions and does not
    try to minimize edge crossings.

    """
    import numpy as np

    if dim < 2:
        raise ValueError("cannot handle dimensions < 2")

    G, center = _process_params(G, center, dim)

    paddims = max(0, (dim - 2))

    if len(G) == 0:
        pos = {}
    elif len(G) == 1:
        pos = {nx.utils.arbitrary_element(G): center}
    else:
        # Discard the extra angle since it matches 0 radians.
        theta = np.linspace(0, 1, len(G) + 1)[:-1] * 2 * np.pi
        theta = theta.astype(np.float32)
        pos = np.column_stack(
            [np.cos(theta), np.sin(theta), np.zeros((len(G), paddims))]
        )
        pos = rescale_layout(pos, scale=scale) + center
        pos = dict(zip(G, pos))

    return pos


def shell_layout(G, nlist=None, rotate=None, scale=1, center=None, dim=2):
    """Position nodes in concentric circles.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    nlist : list of lists
       List of node lists for each shell.

    rotate : angle in radians (default=pi/len(nlist))
       Angle by which to rotate the starting position of each shell
       relative to the starting position of the previous shell.
       To recreate behavior before v2.5 use rotate=0.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout, currently only dim=2 is supported.
        Other dimension values result in a ValueError.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Raises
    ------
    ValueError
        If dim != 2

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> shells = [[0], [1, 2, 3]]
    >>> pos = nx.shell_layout(G, shells)

    Notes
    -----
    This algorithm currently only works in two dimensions and does not
    try to minimize edge crossings.

    """
    import numpy as np

    if dim != 2:
        raise ValueError("can only handle 2 dimensions")

    G, center = _process_params(G, center, dim)

    if len(G) == 0:
        return {}
    if len(G) == 1:
        return {nx.utils.arbitrary_element(G): center}

    if nlist is None:
        # draw the whole graph in one shell
        nlist = [list(G)]

    radius_bump = scale / len(nlist)

    if len(nlist[0]) == 1:
        # single node at center
        radius = 0.0
    else:
        # else start at r=1
        radius = radius_bump

    if rotate is None:
        rotate = np.pi / len(nlist)
    first_theta = rotate
    npos = {}
    for nodes in nlist:
        # Discard the last angle (endpoint=False) since 2*pi matches 0 radians
        theta = (
            np.linspace(0, 2 * np.pi, len(nodes), endpoint=False, dtype=np.float32)
            + first_theta
        )
        pos = radius * np.column_stack([np.cos(theta), np.sin(theta)]) + center
        npos.update(zip(nodes, pos))
        radius += radius_bump
        first_theta += rotate

    return npos


def bipartite_layout(
    G, nodes, align="vertical", scale=1, center=None, aspect_ratio=4 / 3
):
    """Position nodes in two straight lines.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    nodes : list or container
        Nodes in one node set of the bipartite graph.
        This set will be placed on left or top.

    align : string (default='vertical')
        The alignment of nodes. Vertical or horizontal.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    aspect_ratio : number (default=4/3):
        The ratio of the width to the height of the layout.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node.

    Examples
    --------
    >>> G = nx.bipartite.gnmk_random_graph(3, 5, 10, seed=123)
    >>> top = nx.bipartite.sets(G)[0]
    >>> pos = nx.bipartite_layout(G, top)

    Notes
    -----
    This algorithm currently only works in two dimensions and does not
    try to minimize edge crossings.

    """

    import numpy as np

    if align not in ("vertical", "horizontal"):
        msg = "align must be either vertical or horizontal."
        raise ValueError(msg)

    G, center = _process_params(G, center=center, dim=2)
    if len(G) == 0:
        return {}

    height = 1
    width = aspect_ratio * height
    offset = (width / 2, height / 2)

    top = dict.fromkeys(nodes)
    bottom = [v for v in G if v not in top]
    nodes = list(top) + bottom

    left_xs = np.repeat(0, len(top))
    right_xs = np.repeat(width, len(bottom))
    left_ys = np.linspace(0, height, len(top))
    right_ys = np.linspace(0, height, len(bottom))

    top_pos = np.column_stack([left_xs, left_ys]) - offset
    bottom_pos = np.column_stack([right_xs, right_ys]) - offset

    pos = np.concatenate([top_pos, bottom_pos])
    pos = rescale_layout(pos, scale=scale) + center
    if align == "horizontal":
        pos = pos[:, ::-1]  # swap x and y coords
    pos = dict(zip(nodes, pos))
    return pos


@np_random_state(10)
def spring_layout(
    G,
    k=None,
    pos=None,
    fixed=None,
    iterations=50,
    threshold=1e-4,
    weight="weight",
    scale=1,
    center=None,
    dim=2,
    seed=None,
):
    """Position nodes using Fruchterman-Reingold force-directed algorithm.

    The algorithm simulates a force-directed representation of the network
    treating edges as springs holding nodes close, while treating nodes
    as repelling objects, sometimes called an anti-gravity force.
    Simulation continues until the positions are close to an equilibrium.

    There are some hard-coded values: minimal distance between
    nodes (0.01) and "temperature" of 0.1 to ensure nodes don't fly away.
    During the simulation, `k` helps determine the distance between nodes,
    though `scale` and `center` determine the size and place after
    rescaling occurs at the end of the simulation.

    Fixing some nodes doesn't allow them to move in the simulation.
    It also turns off the rescaling feature at the simulation's end.
    In addition, setting `scale` to `None` turns off rescaling.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    k : float (default=None)
        Optimal distance between nodes.  If None the distance is set to
        1/sqrt(n) where n is the number of nodes.  Increase this value
        to move nodes farther apart.

    pos : dict or None  optional (default=None)
        Initial positions for nodes as a dictionary with node as keys
        and values as a coordinate list or tuple.  If None, then use
        random initial positions.

    fixed : list or None  optional (default=None)
        Nodes to keep fixed at initial position.
        Nodes not in ``G.nodes`` are ignored.
        ValueError raised if `fixed` specified and `pos` not.

    iterations : int  optional (default=50)
        Maximum number of iterations taken

    threshold: float optional (default = 1e-4)
        Threshold for relative error in node position changes.
        The iteration stops if the error is below this threshold.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for
        the edge weight.  Larger means a stronger attractive force.
        If None, then all edge weights are 1.

    scale : number or None (default: 1)
        Scale factor for positions. Not used unless `fixed is None`.
        If scale is None, no rescaling is performed.

    center : array-like or None
        Coordinate pair around which to center the layout.
        Not used unless `fixed is None`.

    dim : int
        Dimension of layout.

    seed : int, RandomState instance or None  optional (default=None)
        Set the random state for deterministic node layouts.
        If int, `seed` is the seed used by the random number generator,
        if numpy.random.RandomState instance, `seed` is the random
        number generator,
        if None, the random number generator is the RandomState instance used
        by numpy.random.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.spring_layout(G)

    # The same using longer but equivalent function name
    >>> pos = nx.fruchterman_reingold_layout(G)
    """
    import numpy as np

    G, center = _process_params(G, center, dim)

    if fixed is not None:
        if pos is None:
            raise ValueError("nodes are fixed without positions given")
        for node in fixed:
            if node not in pos:
                raise ValueError("nodes are fixed without positions given")
        nfixed = {node: i for i, node in enumerate(G)}
        fixed = np.asarray([nfixed[node] for node in fixed if node in nfixed])

    if pos is not None:
        # Determine size of existing domain to adjust initial positions
        dom_size = max(coord for pos_tup in pos.values() for coord in pos_tup)
        if dom_size == 0:
            dom_size = 1
        pos_arr = seed.rand(len(G), dim) * dom_size + center

        for i, n in enumerate(G):
            if n in pos:
                pos_arr[i] = np.asarray(pos[n])
    else:
        pos_arr = None
        dom_size = 1

    if len(G) == 0:
        return {}
    if len(G) == 1:
        return {nx.utils.arbitrary_element(G.nodes()): center}

    try:
        # Sparse matrix
        if len(G) < 500:  # sparse solver for large graphs
            raise ValueError
        A = nx.to_scipy_sparse_array(G, weight=weight, dtype="f")
        if k is None and fixed is not None:
            # We must adjust k by domain size for layouts not near 1x1
            nnodes, _ = A.shape
            k = dom_size / np.sqrt(nnodes)
        pos = _sparse_fruchterman_reingold(
            A, k, pos_arr, fixed, iterations, threshold, dim, seed
        )
    except ValueError:
        A = nx.to_numpy_array(G, weight=weight)
        if k is None and fixed is not None:
            # We must adjust k by domain size for layouts not near 1x1
            nnodes, _ = A.shape
            k = dom_size / np.sqrt(nnodes)
        pos = _fruchterman_reingold(
            A, k, pos_arr, fixed, iterations, threshold, dim, seed
        )
    if fixed is None and scale is not None:
        pos = rescale_layout(pos, scale=scale) + center
    pos = dict(zip(G, pos))
    return pos


fruchterman_reingold_layout = spring_layout


@np_random_state(7)
def _fruchterman_reingold(
    A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
):
    # Position nodes in adjacency matrix A using Fruchterman-Reingold
    # Entry point for NetworkX graph is fruchterman_reingold_layout()
    import numpy as np

    try:
        nnodes, _ = A.shape
    except AttributeError as err:
        msg = "fruchterman_reingold() takes an adjacency matrix as input"
        raise nx.NetworkXError(msg) from err

    if pos is None:
        # random initial positions
        pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
    else:
        # make sure positions are of same type as matrix
        pos = pos.astype(A.dtype)

    # optimal distance between nodes
    if k is None:
        k = np.sqrt(1.0 / nnodes)
    # the initial "temperature"  is about .1 of domain area (=1x1)
    # this is the largest step allowed in the dynamics.
    # We need to calculate this in case our fixed positions force our domain
    # to be much bigger than 1x1
    t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
    # simple cooling scheme.
    # linearly step down by dt on each iteration so last iteration is size dt.
    dt = t / (iterations + 1)
    delta = np.zeros((pos.shape[0], pos.shape[0], pos.shape[1]), dtype=A.dtype)
    # the inscrutable (but fast) version
    # this is still O(V^2)
    # could use multilevel methods to speed this up significantly
    for iteration in range(iterations):
        # matrix of difference between points
        delta = pos[:, np.newaxis, :] - pos[np.newaxis, :, :]
        # distance between points
        distance = np.linalg.norm(delta, axis=-1)
        # enforce minimum distance of 0.01
        np.clip(distance, 0.01, None, out=distance)
        # displacement "force"
        displacement = np.einsum(
            "ijk,ij->ik", delta, (k * k / distance**2 - A * distance / k)
        )
        # update positions
        length = np.linalg.norm(displacement, axis=-1)
        length = np.where(length < 0.01, 0.1, length)
        delta_pos = np.einsum("ij,i->ij", displacement, t / length)
        if fixed is not None:
            # don't change positions of fixed nodes
            delta_pos[fixed] = 0.0
        pos += delta_pos
        # cool temperature
        t -= dt
        if (np.linalg.norm(delta_pos) / nnodes) < threshold:
            break
    return pos


@np_random_state(7)
def _sparse_fruchterman_reingold(
    A, k=None, pos=None, fixed=None, iterations=50, threshold=1e-4, dim=2, seed=None
):
    # Position nodes in adjacency matrix A using Fruchterman-Reingold
    # Entry point for NetworkX graph is fruchterman_reingold_layout()
    # Sparse version
    import numpy as np
    import scipy as sp

    try:
        nnodes, _ = A.shape
    except AttributeError as err:
        msg = "fruchterman_reingold() takes an adjacency matrix as input"
        raise nx.NetworkXError(msg) from err
    # make sure we have a LIst of Lists representation
    try:
        A = A.tolil()
    except AttributeError:
        A = (sp.sparse.coo_array(A)).tolil()

    if pos is None:
        # random initial positions
        pos = np.asarray(seed.rand(nnodes, dim), dtype=A.dtype)
    else:
        # make sure positions are of same type as matrix
        pos = pos.astype(A.dtype)

    # no fixed nodes
    if fixed is None:
        fixed = []

    # optimal distance between nodes
    if k is None:
        k = np.sqrt(1.0 / nnodes)
    # the initial "temperature"  is about .1 of domain area (=1x1)
    # this is the largest step allowed in the dynamics.
    t = max(max(pos.T[0]) - min(pos.T[0]), max(pos.T[1]) - min(pos.T[1])) * 0.1
    # simple cooling scheme.
    # linearly step down by dt on each iteration so last iteration is size dt.
    dt = t / (iterations + 1)

    displacement = np.zeros((dim, nnodes))
    for iteration in range(iterations):
        displacement *= 0
        # loop over rows
        for i in range(A.shape[0]):
            if i in fixed:
                continue
            # difference between this row's node position and all others
            delta = (pos[i] - pos).T
            # distance between points
            distance = np.sqrt((delta**2).sum(axis=0))
            # enforce minimum distance of 0.01
            distance = np.where(distance < 0.01, 0.01, distance)
            # the adjacency matrix row
            Ai = A.getrowview(i).toarray()  # TODO: revisit w/ sparse 1D container
            # displacement "force"
            displacement[:, i] += (
                delta * (k * k / distance**2 - Ai * distance / k)
            ).sum(axis=1)
        # update positions
        length = np.sqrt((displacement**2).sum(axis=0))
        length = np.where(length < 0.01, 0.1, length)
        delta_pos = (displacement * t / length).T
        pos += delta_pos
        # cool temperature
        t -= dt
        if (np.linalg.norm(delta_pos) / nnodes) < threshold:
            break
    return pos


def kamada_kawai_layout(
    G, dist=None, pos=None, weight="weight", scale=1, center=None, dim=2
):
    """Position nodes using Kamada-Kawai path-length cost-function.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    dist : dict (default=None)
        A two-level dictionary of optimal distances between nodes,
        indexed by source and destination node.
        If None, the distance is computed using shortest_path_length().

    pos : dict or None  optional (default=None)
        Initial positions for nodes as a dictionary with node as keys
        and values as a coordinate list or tuple.  If None, then use
        circular_layout() for dim >= 2 and a linear layout for dim == 1.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for
        the edge weight.  If None, then all edge weights are 1.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.kamada_kawai_layout(G)
    """
    import numpy as np

    G, center = _process_params(G, center, dim)
    nNodes = len(G)
    if nNodes == 0:
        return {}

    if dist is None:
        dist = dict(nx.shortest_path_length(G, weight=weight))
    dist_mtx = 1e6 * np.ones((nNodes, nNodes))
    for row, nr in enumerate(G):
        if nr not in dist:
            continue
        rdist = dist[nr]
        for col, nc in enumerate(G):
            if nc not in rdist:
                continue
            dist_mtx[row][col] = rdist[nc]

    if pos is None:
        if dim >= 3:
            pos = random_layout(G, dim=dim)
        elif dim == 2:
            pos = circular_layout(G, dim=dim)
        else:
            pos = dict(zip(G, np.linspace(0, 1, len(G))))
    pos_arr = np.array([pos[n] for n in G])

    pos = _kamada_kawai_solve(dist_mtx, pos_arr, dim)

    pos = rescale_layout(pos, scale=scale) + center
    return dict(zip(G, pos))


def _kamada_kawai_solve(dist_mtx, pos_arr, dim):
    # Anneal node locations based on the Kamada-Kawai cost-function,
    # using the supplied matrix of preferred inter-node distances,
    # and starting locations.

    import numpy as np
    import scipy as sp

    meanwt = 1e-3
    costargs = (np, 1 / (dist_mtx + np.eye(dist_mtx.shape[0]) * 1e-3), meanwt, dim)

    optresult = sp.optimize.minimize(
        _kamada_kawai_costfn,
        pos_arr.ravel(),
        method="L-BFGS-B",
        args=costargs,
        jac=True,
    )

    return optresult.x.reshape((-1, dim))


def _kamada_kawai_costfn(pos_vec, np, invdist, meanweight, dim):
    # Cost-function and gradient for Kamada-Kawai layout algorithm
    nNodes = invdist.shape[0]
    pos_arr = pos_vec.reshape((nNodes, dim))

    delta = pos_arr[:, np.newaxis, :] - pos_arr[np.newaxis, :, :]
    nodesep = np.linalg.norm(delta, axis=-1)
    direction = np.einsum("ijk,ij->ijk", delta, 1 / (nodesep + np.eye(nNodes) * 1e-3))

    offset = nodesep * invdist - 1.0
    offset[np.diag_indices(nNodes)] = 0

    cost = 0.5 * np.sum(offset**2)
    grad = np.einsum("ij,ij,ijk->ik", invdist, offset, direction) - np.einsum(
        "ij,ij,ijk->jk", invdist, offset, direction
    )

    # Additional parabolic term to encourage mean position to be near origin:
    sumpos = np.sum(pos_arr, axis=0)
    cost += 0.5 * meanweight * np.sum(sumpos**2)
    grad += meanweight * sumpos

    return (cost, grad.ravel())


def spectral_layout(G, weight="weight", scale=1, center=None, dim=2):
    """Position nodes using the eigenvectors of the graph Laplacian.

    Using the unnormalized Laplacian, the layout shows possible clusters of
    nodes which are an approximation of the ratio cut. If dim is the number of
    dimensions then the positions are the entries of the dim eigenvectors
    corresponding to the ascending eigenvalues starting from the second one.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    weight : string or None   optional (default='weight')
        The edge attribute that holds the numerical value used for
        the edge weight.  If None, then all edge weights are 1.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.spectral_layout(G)

    Notes
    -----
    Directed graphs will be considered as undirected graphs when
    positioning the nodes.

    For larger graphs (>500 nodes) this will use the SciPy sparse
    eigenvalue solver (ARPACK).
    """
    # handle some special cases that break the eigensolvers
    import numpy as np

    G, center = _process_params(G, center, dim)

    if len(G) <= 2:
        if len(G) == 0:
            pos = np.array([])
        elif len(G) == 1:
            pos = np.array([center])
        else:
            pos = np.array([np.zeros(dim), np.array(center) * 2.0])
        return dict(zip(G, pos))
    try:
        # Sparse matrix
        if len(G) < 500:  # dense solver is faster for small graphs
            raise ValueError
        A = nx.to_scipy_sparse_array(G, weight=weight, dtype="d")
        # Symmetrize directed graphs
        if G.is_directed():
            A = A + np.transpose(A)
        pos = _sparse_spectral(A, dim)
    except (ImportError, ValueError):
        # Dense matrix
        A = nx.to_numpy_array(G, weight=weight)
        # Symmetrize directed graphs
        if G.is_directed():
            A += A.T
        pos = _spectral(A, dim)

    pos = rescale_layout(pos, scale=scale) + center
    pos = dict(zip(G, pos))
    return pos


def _spectral(A, dim=2):
    # Input adjacency matrix A
    # Uses dense eigenvalue solver from numpy
    import numpy as np

    try:
        nnodes, _ = A.shape
    except AttributeError as err:
        msg = "spectral() takes an adjacency matrix as input"
        raise nx.NetworkXError(msg) from err

    # form Laplacian matrix where D is diagonal of degrees
    D = np.identity(nnodes, dtype=A.dtype) * np.sum(A, axis=1)
    L = D - A

    eigenvalues, eigenvectors = np.linalg.eig(L)
    # sort and keep smallest nonzero
    index = np.argsort(eigenvalues)[1 : dim + 1]  # 0 index is zero eigenvalue
    return np.real(eigenvectors[:, index])


def _sparse_spectral(A, dim=2):
    # Input adjacency matrix A
    # Uses sparse eigenvalue solver from scipy
    # Could use multilevel methods here, see Koren "On spectral graph drawing"
    import numpy as np
    import scipy as sp

    try:
        nnodes, _ = A.shape
    except AttributeError as err:
        msg = "sparse_spectral() takes an adjacency matrix as input"
        raise nx.NetworkXError(msg) from err

    # form Laplacian matrix
    # TODO: Rm csr_array wrapper in favor of spdiags array constructor when available
    D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, nnodes, nnodes))
    L = D - A

    k = dim + 1
    # number of Lanczos vectors for ARPACK solver.What is the right scaling?
    ncv = max(2 * k + 1, int(np.sqrt(nnodes)))
    # return smallest k eigenvalues and eigenvectors
    eigenvalues, eigenvectors = sp.sparse.linalg.eigsh(L, k, which="SM", ncv=ncv)
    index = np.argsort(eigenvalues)[1:k]  # 0 index is zero eigenvalue
    return np.real(eigenvectors[:, index])


def planar_layout(G, scale=1, center=None, dim=2):
    """Position nodes without edge intersections.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G. If G is of type
        nx.PlanarEmbedding, the positions are selected accordingly.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    dim : int
        Dimension of layout.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Raises
    ------
    NetworkXException
        If G is not planar

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.planar_layout(G)
    """
    import numpy as np

    if dim != 2:
        raise ValueError("can only handle 2 dimensions")

    G, center = _process_params(G, center, dim)

    if len(G) == 0:
        return {}

    if isinstance(G, nx.PlanarEmbedding):
        embedding = G
    else:
        is_planar, embedding = nx.check_planarity(G)
        if not is_planar:
            raise nx.NetworkXException("G is not planar.")
    pos = nx.combinatorial_embedding_to_pos(embedding)
    node_list = list(embedding)
    pos = np.row_stack([pos[x] for x in node_list])
    pos = pos.astype(np.float64)
    pos = rescale_layout(pos, scale=scale) + center
    return dict(zip(node_list, pos))


def spiral_layout(G, scale=1, center=None, dim=2, resolution=0.35, equidistant=False):
    """Position nodes in a spiral layout.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.
    scale : number (default: 1)
        Scale factor for positions.
    center : array-like or None
        Coordinate pair around which to center the layout.
    dim : int, default=2
        Dimension of layout, currently only dim=2 is supported.
        Other dimension values result in a ValueError.
    resolution : float, default=0.35
        The compactness of the spiral layout returned.
        Lower values result in more compressed spiral layouts.
    equidistant : bool, default=False
        If True, nodes will be positioned equidistant from each other
        by decreasing angle further from center.
        If False, nodes will be positioned at equal angles
        from each other by increasing separation further from center.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node

    Raises
    ------
    ValueError
        If dim != 2

    Examples
    --------
    >>> G = nx.path_graph(4)
    >>> pos = nx.spiral_layout(G)
    >>> nx.draw(G, pos=pos)

    Notes
    -----
    This algorithm currently only works in two dimensions.

    """
    import numpy as np

    if dim != 2:
        raise ValueError("can only handle 2 dimensions")

    G, center = _process_params(G, center, dim)

    if len(G) == 0:
        return {}
    if len(G) == 1:
        return {nx.utils.arbitrary_element(G): center}

    pos = []
    if equidistant:
        chord = 1
        step = 0.5
        theta = resolution
        theta += chord / (step * theta)
        for _ in range(len(G)):
            r = step * theta
            theta += chord / r
            pos.append([np.cos(theta) * r, np.sin(theta) * r])

    else:
        dist = np.arange(len(G), dtype=float)
        angle = resolution * dist
        pos = np.transpose(dist * np.array([np.cos(angle), np.sin(angle)]))

    pos = rescale_layout(np.array(pos), scale=scale) + center

    pos = dict(zip(G, pos))

    return pos


def multipartite_layout(G, subset_key="subset", align="vertical", scale=1, center=None):
    """Position nodes in layers of straight lines.

    Parameters
    ----------
    G : NetworkX graph or list of nodes
        A position will be assigned to every node in G.

    subset_key : string (default='subset')
        Key of node data to be used as layer subset.

    align : string (default='vertical')
        The alignment of nodes. Vertical or horizontal.

    scale : number (default: 1)
        Scale factor for positions.

    center : array-like or None
        Coordinate pair around which to center the layout.

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node.

    Examples
    --------
    >>> G = nx.complete_multipartite_graph(28, 16, 10)
    >>> pos = nx.multipartite_layout(G)

    Notes
    -----
    This algorithm currently only works in two dimensions and does not
    try to minimize edge crossings.

    Network does not need to be a complete multipartite graph. As long as nodes
    have subset_key data, they will be placed in the corresponding layers.

    """
    import numpy as np

    if align not in ("vertical", "horizontal"):
        msg = "align must be either vertical or horizontal."
        raise ValueError(msg)

    G, center = _process_params(G, center=center, dim=2)
    if len(G) == 0:
        return {}

    layers = {}
    for v, data in G.nodes(data=True):
        try:
            layer = data[subset_key]
        except KeyError:
            msg = "all nodes must have subset_key (default='subset') as data"
            raise ValueError(msg)
        layers[layer] = [v] + layers.get(layer, [])

    # Sort by layer, if possible
    try:
        layers = sorted(layers.items())
    except TypeError:
        layers = list(layers.items())

    pos = None
    nodes = []
    width = len(layers)
    for i, (_, layer) in enumerate(layers):
        height = len(layer)
        xs = np.repeat(i, height)
        ys = np.arange(0, height, dtype=float)
        offset = ((width - 1) / 2, (height - 1) / 2)
        layer_pos = np.column_stack([xs, ys]) - offset
        if pos is None:
            pos = layer_pos
        else:
            pos = np.concatenate([pos, layer_pos])
        nodes.extend(layer)
    pos = rescale_layout(pos, scale=scale) + center
    if align == "horizontal":
        pos = pos[:, ::-1]  # swap x and y coords
    pos = dict(zip(nodes, pos))
    return pos


def arf_layout(
    G,
    pos=None,
    scaling=1,
    a=1.1,
    etol=1e-6,
    dt=1e-3,
    max_iter=1000,
):
    """Arf layout for networkx

    The attractive and repulsive forces (arf) layout [1]
    improves the spring layout in three ways. First, it
    prevents congestion of highly connected nodes due to
    strong forcing between nodes. Second, it utilizes the
    layout space more effectively by preventing large gaps
    that spring layout tends to create. Lastly, the arf
    layout represents symmetries in the layout better than
    the default spring layout.

    Parameters
    ----------
    G : nx.Graph or nx.DiGraph
        Networkx graph.
    pos : dict
        Initial  position of  the nodes.  If set  to None  a
        random layout will be used.
    scaling : float
        Scales the radius of the circular layout space.
    a : float
        Strength of springs between connected nodes. Should be larger than 1. The greater a, the clearer the separation ofunconnected sub clusters.
    etol : float
        Gradient sum of spring forces must be larger than `etol` before successful termination.
    dt : float
        Time step for force differential equation simulations.
    max_iter : int
        Max iterations before termination of the algorithm.

    References
    .. [1] "Self-Organization Applied to Dynamic Network Layout", M. Geipel,
            International Journal of Modern Physics C, 2007, Vol 18, No 10, pp. 1537-1549.
            https://doi.org/10.1142/S0129183107011558 https://arxiv.org/abs/0704.1748

    Returns
    -------
    pos : dict
        A dictionary of positions keyed by node.

    Examples
    --------
    >>> G = nx.grid_graph((5, 5))
    >>> pos = nx.arf_layout(G)

    """
    import warnings

    import numpy as np

    if a <= 1:
        msg = "The parameter a should be larger than 1"
        raise ValueError(msg)

    pos_tmp = nx.random_layout(G)
    if pos is None:
        pos = pos_tmp
    else:
        for node in G.nodes():
            if node not in pos:
                pos[node] = pos_tmp[node].copy()

    # Initialize spring constant matrix
    N = len(G)
    # No nodes no computation
    if N == 0:
        return pos

    # init force of springs
    K = np.ones((N, N)) - np.eye(N)
    node_order = {node: i for i, node in enumerate(G)}
    for x, y in G.edges():
        if x != y:
            idx, jdx = (node_order[i] for i in (x, y))
            K[idx, jdx] = a

    # vectorize values
    p = np.asarray(list(pos.values()))

    # equation 10 in [1]
    rho = scaling * np.sqrt(N)

    # looping variables
    error = etol + 1
    n_iter = 0
    while error > etol:
        diff = p[:, np.newaxis] - p[np.newaxis]
        A = np.linalg.norm(diff, axis=-1)[..., np.newaxis]
        # attraction_force - repulsions force
        # suppress nans due to division; caused by diagonal set to zero.
        # Does not affect the computation due to nansum
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            change = K[..., np.newaxis] * diff - rho / A * diff
        change = np.nansum(change, axis=0)
        p += change * dt

        error = np.linalg.norm(change, axis=-1).sum()
        if n_iter > max_iter:
            break
        n_iter += 1
    return dict(zip(G.nodes(), p))


def rescale_layout(pos, scale=1):
    """Returns scaled position array to (-scale, scale) in all axes.

    The function acts on NumPy arrays which hold position information.
    Each position is one row of the array. The dimension of the space
    equals the number of columns. Each coordinate in one column.

    To rescale, the mean (center) is subtracted from each axis separately.
    Then all values are scaled so that the largest magnitude value
    from all axes equals `scale` (thus, the aspect ratio is preserved).
    The resulting NumPy Array is returned (order of rows unchanged).

    Parameters
    ----------
    pos : numpy array
        positions to be scaled. Each row is a position.

    scale : number (default: 1)
        The size of the resulting extent in all directions.

    Returns
    -------
    pos : numpy array
        scaled positions. Each row is a position.

    See Also
    --------
    rescale_layout_dict
    """
    import numpy as np

    # Find max length over all dimensions
    pos -= pos.mean(axis=0)
    lim = np.abs(pos).max()  # max coordinate for all axes
    # rescale to (-scale, scale) in all directions, preserves aspect
    if lim > 0:
        pos *= scale / lim
    return pos


def rescale_layout_dict(pos, scale=1):
    """Return a dictionary of scaled positions keyed by node

    Parameters
    ----------
    pos : A dictionary of positions keyed by node

    scale : number (default: 1)
        The size of the resulting extent in all directions.

    Returns
    -------
    pos : A dictionary of positions keyed by node

    Examples
    --------
    >>> import numpy as np
    >>> pos = {0: np.array((0, 0)), 1: np.array((1, 1)), 2: np.array((0.5, 0.5))}
    >>> nx.rescale_layout_dict(pos)
    {0: array([-1., -1.]), 1: array([1., 1.]), 2: array([0., 0.])}

    >>> pos = {0: np.array((0, 0)), 1: np.array((-1, 1)), 2: np.array((-0.5, 0.5))}
    >>> nx.rescale_layout_dict(pos, scale=2)
    {0: array([ 2., -2.]), 1: array([-2.,  2.]), 2: array([0., 0.])}

    See Also
    --------
    rescale_layout
    """
    import numpy as np

    if not pos:  # empty_graph
        return {}
    pos_v = np.array(list(pos.values()))
    pos_v = rescale_layout(pos_v, scale=scale)
    return dict(zip(pos, pos_v))