Spaces:
Running
Running
File size: 51,138 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 |
"""
**********
Matplotlib
**********
Draw networks with matplotlib.
Examples
--------
>>> G = nx.complete_graph(5)
>>> nx.draw(G)
See Also
--------
- :doc:`matplotlib <matplotlib:index>`
- :func:`matplotlib.pyplot.scatter`
- :obj:`matplotlib.patches.FancyArrowPatch`
"""
from numbers import Number
import networkx as nx
from networkx.drawing.layout import (
circular_layout,
kamada_kawai_layout,
planar_layout,
random_layout,
shell_layout,
spectral_layout,
spring_layout,
)
__all__ = [
"draw",
"draw_networkx",
"draw_networkx_nodes",
"draw_networkx_edges",
"draw_networkx_labels",
"draw_networkx_edge_labels",
"draw_circular",
"draw_kamada_kawai",
"draw_random",
"draw_spectral",
"draw_spring",
"draw_planar",
"draw_shell",
]
def draw(G, pos=None, ax=None, **kwds):
"""Draw the graph G with Matplotlib.
Draw the graph as a simple representation with no node
labels or edge labels and using the full Matplotlib figure area
and no axis labels by default. See draw_networkx() for more
full-featured drawing that allows title, axis labels etc.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in specified Matplotlib axes.
kwds : optional keywords
See networkx.draw_networkx() for a description of optional keywords.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
See Also
--------
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
Notes
-----
This function has the same name as pylab.draw and pyplot.draw
so beware when using `from networkx import *`
since you might overwrite the pylab.draw function.
With pyplot use
>>> import matplotlib.pyplot as plt
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
"""
import matplotlib.pyplot as plt
if ax is None:
cf = plt.gcf()
else:
cf = ax.get_figure()
cf.set_facecolor("w")
if ax is None:
if cf.axes:
ax = cf.gca()
else:
ax = cf.add_axes((0, 0, 1, 1))
if "with_labels" not in kwds:
kwds["with_labels"] = "labels" in kwds
draw_networkx(G, pos=pos, ax=ax, **kwds)
ax.set_axis_off()
plt.draw_if_interactive()
return
def draw_networkx(G, pos=None, arrows=None, with_labels=True, **kwds):
r"""Draw the graph G using Matplotlib.
Draw the graph with Matplotlib with options for node positions,
labeling, titles, and many other drawing features.
See draw() for simple drawing without labels or axes.
Parameters
----------
G : graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values.
If not specified a spring layout positioning will be computed.
See :py:mod:`networkx.drawing.layout` for functions that
compute node positions.
arrows : bool or None, optional (default=None)
If `None`, directed graphs draw arrowheads with
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
via `~matplotlib.collections.LineCollection` for speed.
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
If `False`, draw edges using LineCollection (linear and fast).
For directed graphs, if True draw arrowheads.
Note: Arrows will be the same color as edges.
arrowstyle : str (default='-\|>' for directed graphs)
For directed graphs, choose the style of the arrowsheads.
For undirected graphs default to '-'
See `matplotlib.patches.ArrowStyle` for more options.
arrowsize : int or list (default=10)
For directed graphs, choose the size of the arrow head's length and
width. A list of values can be passed in to assign a different size for arrow head's length and width.
See `matplotlib.patches.FancyArrowPatch` for attribute `mutation_scale`
for more info.
with_labels : bool (default=True)
Set to True to draw labels on the nodes.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list (default=list(G))
Draw only specified nodes
edgelist : list (default=list(G.edges()))
Draw only specified edges
node_size : scalar or array (default=300)
Size of nodes. If an array is specified it must be the
same length as nodelist.
node_color : color or array of colors (default='#1f78b4')
Node color. Can be a single color or a sequence of colors with the same
length as nodelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string (default='o')
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8'.
alpha : float or None (default=None)
The node and edge transparency
cmap : Matplotlib colormap, optional
Colormap for mapping intensities of nodes
vmin,vmax : float, optional
Minimum and maximum for node colormap scaling
linewidths : scalar or sequence (default=1.0)
Line width of symbol border
width : float or array of floats (default=1.0)
Line width of edges
edge_color : color or array of colors (default='k')
Edge color. Can be a single color or a sequence of colors with the same
length as edgelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
edge_cmap : Matplotlib colormap, optional
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional
Minimum and maximum for edge colormap scaling
style : string (default=solid line)
Edge line style e.g.: '-', '--', '-.', ':'
or words like 'solid' or 'dashed'.
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
labels : dictionary (default=None)
Node labels in a dictionary of text labels keyed by node
font_size : int (default=12 for nodes, 10 for edges)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
label : string, optional
Label for graph legend
kwds : optional keywords
See networkx.draw_networkx_nodes(), networkx.draw_networkx_edges(), and
networkx.draw_networkx_labels() for a description of optional keywords.
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout
>>> import matplotlib.pyplot as plt
>>> limits = plt.axis("off") # turn off axis
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
"""
from inspect import signature
import matplotlib.pyplot as plt
# Get all valid keywords by inspecting the signatures of draw_networkx_nodes,
# draw_networkx_edges, draw_networkx_labels
valid_node_kwds = signature(draw_networkx_nodes).parameters.keys()
valid_edge_kwds = signature(draw_networkx_edges).parameters.keys()
valid_label_kwds = signature(draw_networkx_labels).parameters.keys()
# Create a set with all valid keywords across the three functions and
# remove the arguments of this function (draw_networkx)
valid_kwds = (valid_node_kwds | valid_edge_kwds | valid_label_kwds) - {
"G",
"pos",
"arrows",
"with_labels",
}
if any(k not in valid_kwds for k in kwds):
invalid_args = ", ".join([k for k in kwds if k not in valid_kwds])
raise ValueError(f"Received invalid argument(s): {invalid_args}")
node_kwds = {k: v for k, v in kwds.items() if k in valid_node_kwds}
edge_kwds = {k: v for k, v in kwds.items() if k in valid_edge_kwds}
label_kwds = {k: v for k, v in kwds.items() if k in valid_label_kwds}
if pos is None:
pos = nx.drawing.spring_layout(G) # default to spring layout
draw_networkx_nodes(G, pos, **node_kwds)
draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds)
if with_labels:
draw_networkx_labels(G, pos, **label_kwds)
plt.draw_if_interactive()
def draw_networkx_nodes(
G,
pos,
nodelist=None,
node_size=300,
node_color="#1f78b4",
node_shape="o",
alpha=None,
cmap=None,
vmin=None,
vmax=None,
ax=None,
linewidths=None,
edgecolors=None,
label=None,
margins=None,
):
"""Draw the nodes of the graph G.
This draws only the nodes of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list (default list(G))
Draw only specified nodes
node_size : scalar or array (default=300)
Size of nodes. If an array it must be the same length as nodelist.
node_color : color or array of colors (default='#1f78b4')
Node color. Can be a single color or a sequence of colors with the same
length as nodelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
node_shape : string (default='o')
The shape of the node. Specification is as matplotlib.scatter
marker, one of 'so^>v<dph8'.
alpha : float or array of floats (default=None)
The node transparency. This can be a single alpha value,
in which case it will be applied to all the nodes of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
cmap : Matplotlib colormap (default=None)
Colormap for mapping intensities of nodes
vmin,vmax : floats or None (default=None)
Minimum and maximum for node colormap scaling
linewidths : [None | scalar | sequence] (default=1.0)
Line width of symbol border
edgecolors : [None | scalar | sequence] (default = node_color)
Colors of node borders. Can be a single color or a sequence of colors with the
same length as nodelist. Color can be string or rgb (or rgba) tuple of floats
from 0-1. If numeric values are specified they will be mapped to colors
using the cmap and vmin,vmax parameters. See `~matplotlib.pyplot.scatter` for more details.
label : [None | string]
Label for legend
margins : float or 2-tuple, optional
Sets the padding for axis autoscaling. Increase margin to prevent
clipping for nodes that are near the edges of an image. Values should
be in the range ``[0, 1]``. See :meth:`matplotlib.axes.Axes.margins`
for details. The default is `None`, which uses the Matplotlib default.
Returns
-------
matplotlib.collections.PathCollection
`PathCollection` of the nodes.
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_edges
draw_networkx_labels
draw_networkx_edge_labels
"""
from collections.abc import Iterable
import matplotlib as mpl
import matplotlib.collections # call as mpl.collections
import matplotlib.pyplot as plt
import numpy as np
if ax is None:
ax = plt.gca()
if nodelist is None:
nodelist = list(G)
if len(nodelist) == 0: # empty nodelist, no drawing
return mpl.collections.PathCollection(None)
try:
xy = np.asarray([pos[v] for v in nodelist])
except KeyError as err:
raise nx.NetworkXError(f"Node {err} has no position.") from err
if isinstance(alpha, Iterable):
node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax)
alpha = None
node_collection = ax.scatter(
xy[:, 0],
xy[:, 1],
s=node_size,
c=node_color,
marker=node_shape,
cmap=cmap,
vmin=vmin,
vmax=vmax,
alpha=alpha,
linewidths=linewidths,
edgecolors=edgecolors,
label=label,
)
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
if margins is not None:
if isinstance(margins, Iterable):
ax.margins(*margins)
else:
ax.margins(margins)
node_collection.set_zorder(2)
return node_collection
def draw_networkx_edges(
G,
pos,
edgelist=None,
width=1.0,
edge_color="k",
style="solid",
alpha=None,
arrowstyle=None,
arrowsize=10,
edge_cmap=None,
edge_vmin=None,
edge_vmax=None,
ax=None,
arrows=None,
label=None,
node_size=300,
nodelist=None,
node_shape="o",
connectionstyle="arc3",
min_source_margin=0,
min_target_margin=0,
):
r"""Draw the edges of the graph G.
This draws only the edges of the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
edgelist : collection of edge tuples (default=G.edges())
Draw only specified edges
width : float or array of floats (default=1.0)
Line width of edges
edge_color : color or array of colors (default='k')
Edge color. Can be a single color or a sequence of colors with the same
length as edgelist. Color can be string or rgb (or rgba) tuple of
floats from 0-1. If numeric values are specified they will be
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
style : string or array of strings (default='solid')
Edge line style e.g.: '-', '--', '-.', ':'
or words like 'solid' or 'dashed'.
Can be a single style or a sequence of styles with the same
length as the edge list.
If less styles than edges are given the styles will cycle.
If more styles than edges are given the styles will be used sequentially
and not be exhausted.
Also, `(offset, onoffseq)` tuples can be used as style instead of a strings.
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`)
alpha : float or array of floats (default=None)
The edge transparency. This can be a single alpha value,
in which case it will be applied to all specified edges. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
edge_cmap : Matplotlib colormap, optional
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional
Minimum and maximum for edge colormap scaling
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
arrows : bool or None, optional (default=None)
If `None`, directed graphs draw arrowheads with
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges
via `~matplotlib.collections.LineCollection` for speed.
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish).
If `False`, draw edges using LineCollection (linear and fast).
Note: Arrowheads will be the same color as edges.
arrowstyle : str (default='-\|>' for directed graphs)
For directed graphs and `arrows==True` defaults to '-\|>',
For undirected graphs default to '-'.
See `matplotlib.patches.ArrowStyle` for more options.
arrowsize : int (default=10)
For directed graphs, choose the size of the arrow head's length and
width. See `matplotlib.patches.FancyArrowPatch` for attribute
`mutation_scale` for more info.
connectionstyle : string (default="arc3")
Pass the connectionstyle parameter to create curved arc of rounding
radius rad. For example, connectionstyle='arc3,rad=0.2'.
See `matplotlib.patches.ConnectionStyle` and
`matplotlib.patches.FancyArrowPatch` for more info.
node_size : scalar or array (default=300)
Size of nodes. Though the nodes are not drawn with this function, the
node size is used in determining edge positioning.
nodelist : list, optional (default=G.nodes())
This provides the node order for the `node_size` array (if it is an array).
node_shape : string (default='o')
The marker used for nodes, used in determining edge positioning.
Specification is as a `matplotlib.markers` marker, e.g. one of 'so^>v<dph8'.
label : None or string
Label for legend
min_source_margin : int (default=0)
The minimum margin (gap) at the beginning of the edge at the source.
min_target_margin : int (default=0)
The minimum margin (gap) at the end of the edge at the target.
Returns
-------
matplotlib.collections.LineCollection or a list of matplotlib.patches.FancyArrowPatch
If ``arrows=True``, a list of FancyArrowPatches is returned.
If ``arrows=False``, a LineCollection is returned.
If ``arrows=None`` (the default), then a LineCollection is returned if
`G` is undirected, otherwise returns a list of FancyArrowPatches.
Notes
-----
For directed graphs, arrows are drawn at the head end. Arrows can be
turned off with keyword arrows=False or by passing an arrowstyle without
an arrow on the end.
Be sure to include `node_size` as a keyword argument; arrows are
drawn considering the size of nodes.
Self-loops are always drawn with `~matplotlib.patches.FancyArrowPatch`
regardless of the value of `arrows` or whether `G` is directed.
When ``arrows=False`` or ``arrows=None`` and `G` is undirected, the
FancyArrowPatches corresponding to the self-loops are not explicitly
returned. They should instead be accessed via the ``Axes.patches``
attribute (see examples).
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2), (1, 3), (2, 3)])
>>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G))
>>> alphas = [0.3, 0.4, 0.5]
>>> for i, arc in enumerate(arcs): # change alpha values of arcs
... arc.set_alpha(alphas[i])
The FancyArrowPatches corresponding to self-loops are not always
returned, but can always be accessed via the ``patches`` attribute of the
`matplotlib.Axes` object.
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> G = nx.Graph([(0, 1), (0, 0)]) # Self-loop at node 0
>>> edge_collection = nx.draw_networkx_edges(G, pos=nx.circular_layout(G), ax=ax)
>>> self_loop_fap = ax.patches[0]
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_labels
draw_networkx_edge_labels
"""
import matplotlib as mpl
import matplotlib.collections # call as mpl.collections
import matplotlib.colors # call as mpl.colors
import matplotlib.patches # call as mpl.patches
import matplotlib.path # call as mpl.path
import matplotlib.pyplot as plt
import numpy as np
# The default behavior is to use LineCollection to draw edges for
# undirected graphs (for performance reasons) and use FancyArrowPatches
# for directed graphs.
# The `arrows` keyword can be used to override the default behavior
use_linecollection = not G.is_directed()
if arrows in (True, False):
use_linecollection = not arrows
# Some kwargs only apply to FancyArrowPatches. Warn users when they use
# non-default values for these kwargs when LineCollection is being used
# instead of silently ignoring the specified option
if use_linecollection and any(
[
arrowstyle is not None,
arrowsize != 10,
connectionstyle != "arc3",
min_source_margin != 0,
min_target_margin != 0,
]
):
import warnings
msg = (
"\n\nThe {0} keyword argument is not applicable when drawing edges\n"
"with LineCollection.\n\n"
"To make this warning go away, either specify `arrows=True` to\n"
"force FancyArrowPatches or use the default value for {0}.\n"
"Note that using FancyArrowPatches may be slow for large graphs.\n"
)
if arrowstyle is not None:
msg = msg.format("arrowstyle")
if arrowsize != 10:
msg = msg.format("arrowsize")
if connectionstyle != "arc3":
msg = msg.format("connectionstyle")
if min_source_margin != 0:
msg = msg.format("min_source_margin")
if min_target_margin != 0:
msg = msg.format("min_target_margin")
warnings.warn(msg, category=UserWarning, stacklevel=2)
if arrowstyle == None:
if G.is_directed():
arrowstyle = "-|>"
else:
arrowstyle = "-"
if ax is None:
ax = plt.gca()
if edgelist is None:
edgelist = list(G.edges())
if len(edgelist) == 0: # no edges!
return []
if nodelist is None:
nodelist = list(G.nodes())
# FancyArrowPatch handles color=None different from LineCollection
if edge_color is None:
edge_color = "k"
edgelist_tuple = list(map(tuple, edgelist))
# set edge positions
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist])
# Check if edge_color is an array of floats and map to edge_cmap.
# This is the only case handled differently from matplotlib
if (
np.iterable(edge_color)
and (len(edge_color) == len(edge_pos))
and np.all([isinstance(c, Number) for c in edge_color])
):
if edge_cmap is not None:
assert isinstance(edge_cmap, mpl.colors.Colormap)
else:
edge_cmap = plt.get_cmap()
if edge_vmin is None:
edge_vmin = min(edge_color)
if edge_vmax is None:
edge_vmax = max(edge_color)
color_normal = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax)
edge_color = [edge_cmap(color_normal(e)) for e in edge_color]
def _draw_networkx_edges_line_collection():
edge_collection = mpl.collections.LineCollection(
edge_pos,
colors=edge_color,
linewidths=width,
antialiaseds=(1,),
linestyle=style,
alpha=alpha,
)
edge_collection.set_cmap(edge_cmap)
edge_collection.set_clim(edge_vmin, edge_vmax)
edge_collection.set_zorder(1) # edges go behind nodes
edge_collection.set_label(label)
ax.add_collection(edge_collection)
return edge_collection
def _draw_networkx_edges_fancy_arrow_patch():
# Note: Waiting for someone to implement arrow to intersection with
# marker. Meanwhile, this works well for polygons with more than 4
# sides and circle.
def to_marker_edge(marker_size, marker):
if marker in "s^>v<d": # `large` markers need extra space
return np.sqrt(2 * marker_size) / 2
else:
return np.sqrt(marker_size) / 2
# Draw arrows with `matplotlib.patches.FancyarrowPatch`
arrow_collection = []
if isinstance(arrowsize, list):
if len(arrowsize) != len(edge_pos):
raise ValueError("arrowsize should have the same length as edgelist")
else:
mutation_scale = arrowsize # scale factor of arrow head
base_connection_style = mpl.patches.ConnectionStyle(connectionstyle)
# Fallback for self-loop scale. Left outside of _connectionstyle so it is
# only computed once
max_nodesize = np.array(node_size).max()
def _connectionstyle(posA, posB, *args, **kwargs):
# check if we need to do a self-loop
if np.all(posA == posB):
# Self-loops are scaled by view extent, except in cases the extent
# is 0, e.g. for a single node. In this case, fall back to scaling
# by the maximum node size
selfloop_ht = 0.005 * max_nodesize if h == 0 else h
# this is called with _screen space_ values so convert back
# to data space
data_loc = ax.transData.inverted().transform(posA)
v_shift = 0.1 * selfloop_ht
h_shift = v_shift * 0.5
# put the top of the loop first so arrow is not hidden by node
path = [
# 1
data_loc + np.asarray([0, v_shift]),
# 4 4 4
data_loc + np.asarray([h_shift, v_shift]),
data_loc + np.asarray([h_shift, 0]),
data_loc,
# 4 4 4
data_loc + np.asarray([-h_shift, 0]),
data_loc + np.asarray([-h_shift, v_shift]),
data_loc + np.asarray([0, v_shift]),
]
ret = mpl.path.Path(ax.transData.transform(path), [1, 4, 4, 4, 4, 4, 4])
# if not, fall back to the user specified behavior
else:
ret = base_connection_style(posA, posB, *args, **kwargs)
return ret
# FancyArrowPatch doesn't handle color strings
arrow_colors = mpl.colors.colorConverter.to_rgba_array(edge_color, alpha)
for i, (src, dst) in zip(fancy_edges_indices, edge_pos):
x1, y1 = src
x2, y2 = dst
shrink_source = 0 # space from source to tail
shrink_target = 0 # space from head to target
if isinstance(arrowsize, list):
# Scale each factor of each arrow based on arrowsize list
mutation_scale = arrowsize[i]
if np.iterable(node_size): # many node sizes
source, target = edgelist[i][:2]
source_node_size = node_size[nodelist.index(source)]
target_node_size = node_size[nodelist.index(target)]
shrink_source = to_marker_edge(source_node_size, node_shape)
shrink_target = to_marker_edge(target_node_size, node_shape)
else:
shrink_source = shrink_target = to_marker_edge(node_size, node_shape)
if shrink_source < min_source_margin:
shrink_source = min_source_margin
if shrink_target < min_target_margin:
shrink_target = min_target_margin
if len(arrow_colors) > i:
arrow_color = arrow_colors[i]
elif len(arrow_colors) == 1:
arrow_color = arrow_colors[0]
else: # Cycle through colors
arrow_color = arrow_colors[i % len(arrow_colors)]
if np.iterable(width):
if len(width) > i:
line_width = width[i]
else:
line_width = width[i % len(width)]
else:
line_width = width
if (
np.iterable(style)
and not isinstance(style, str)
and not isinstance(style, tuple)
):
if len(style) > i:
linestyle = style[i]
else: # Cycle through styles
linestyle = style[i % len(style)]
else:
linestyle = style
arrow = mpl.patches.FancyArrowPatch(
(x1, y1),
(x2, y2),
arrowstyle=arrowstyle,
shrinkA=shrink_source,
shrinkB=shrink_target,
mutation_scale=mutation_scale,
color=arrow_color,
linewidth=line_width,
connectionstyle=_connectionstyle,
linestyle=linestyle,
zorder=1,
) # arrows go behind nodes
arrow_collection.append(arrow)
ax.add_patch(arrow)
return arrow_collection
# compute initial view
minx = np.amin(np.ravel(edge_pos[:, :, 0]))
maxx = np.amax(np.ravel(edge_pos[:, :, 0]))
miny = np.amin(np.ravel(edge_pos[:, :, 1]))
maxy = np.amax(np.ravel(edge_pos[:, :, 1]))
w = maxx - minx
h = maxy - miny
# Draw the edges
if use_linecollection:
edge_viz_obj = _draw_networkx_edges_line_collection()
# Make sure selfloop edges are also drawn
selfloops_to_draw = [loop for loop in nx.selfloop_edges(G) if loop in edgelist]
if selfloops_to_draw:
fancy_edges_indices = [
edgelist_tuple.index(loop) for loop in selfloops_to_draw
]
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in selfloops_to_draw])
arrowstyle = "-"
_draw_networkx_edges_fancy_arrow_patch()
else:
fancy_edges_indices = range(len(edgelist))
edge_viz_obj = _draw_networkx_edges_fancy_arrow_patch()
# update view after drawing
padx, pady = 0.05 * w, 0.05 * h
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady)
ax.update_datalim(corners)
ax.autoscale_view()
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return edge_viz_obj
def draw_networkx_labels(
G,
pos,
labels=None,
font_size=12,
font_color="k",
font_family="sans-serif",
font_weight="normal",
alpha=None,
bbox=None,
horizontalalignment="center",
verticalalignment="center",
ax=None,
clip_on=True,
):
"""Draw node labels on the graph G.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
labels : dictionary (default={n: n for n in G})
Node labels in a dictionary of text labels keyed by node.
Node-keys in labels should appear as keys in `pos`.
If needed use: `{n:lab for n,lab in labels.items() if n in pos}`
font_size : int (default=12)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
alpha : float or None (default=None)
The text transparency
bbox : Matplotlib bbox, (default is Matplotlib's ax.text default)
Specify text box properties (e.g. shape, color etc.) for node labels.
horizontalalignment : string (default='center')
Horizontal alignment {'center', 'right', 'left'}
verticalalignment : string (default='center')
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
clip_on : bool (default=True)
Turn on clipping of node labels at axis boundaries
Returns
-------
dict
`dict` of labels keyed on the nodes
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_edge_labels
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
if labels is None:
labels = {n: n for n in G.nodes()}
text_items = {} # there is no text collection so we'll fake one
for n, label in labels.items():
(x, y) = pos[n]
if not isinstance(label, str):
label = str(label) # this makes "1" and 1 labeled the same
t = ax.text(
x,
y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
transform=ax.transData,
bbox=bbox,
clip_on=clip_on,
)
text_items[n] = t
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return text_items
def draw_networkx_edge_labels(
G,
pos,
edge_labels=None,
label_pos=0.5,
font_size=10,
font_color="k",
font_family="sans-serif",
font_weight="normal",
alpha=None,
bbox=None,
horizontalalignment="center",
verticalalignment="center",
ax=None,
rotate=True,
clip_on=True,
):
"""Draw edge labels.
Parameters
----------
G : graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values.
Positions should be sequences of length 2.
edge_labels : dictionary (default=None)
Edge labels in a dictionary of labels keyed by edge two-tuple.
Only labels for the keys in the dictionary are drawn.
label_pos : float (default=0.5)
Position of edge label along edge (0=head, 0.5=center, 1=tail)
font_size : int (default=10)
Font size for text labels
font_color : color (default='k' black)
Font color string. Color can be string or rgb (or rgba) tuple of
floats from 0-1.
font_weight : string (default='normal')
Font weight
font_family : string (default='sans-serif')
Font family
alpha : float or None (default=None)
The text transparency
bbox : Matplotlib bbox, optional
Specify text box properties (e.g. shape, color etc.) for edge labels.
Default is {boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0)}.
horizontalalignment : string (default='center')
Horizontal alignment {'center', 'right', 'left'}
verticalalignment : string (default='center')
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
rotate : bool (default=True)
Rotate edge labels to lie parallel to edges
clip_on : bool (default=True)
Turn on clipping of edge labels at axis boundaries
Returns
-------
dict
`dict` of labels keyed by edge
Examples
--------
>>> G = nx.dodecahedral_graph()
>>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G))
Also see the NetworkX drawing examples at
https://networkx.org/documentation/latest/auto_examples/index.html
See Also
--------
draw
draw_networkx
draw_networkx_nodes
draw_networkx_edges
draw_networkx_labels
"""
import matplotlib.pyplot as plt
import numpy as np
if ax is None:
ax = plt.gca()
if edge_labels is None:
labels = {(u, v): d for u, v, d in G.edges(data=True)}
else:
labels = edge_labels
# Informative exception for multiedges
try:
(u, v) = next(iter(labels)) # ensures no edge key provided
except ValueError as err:
raise nx.NetworkXError(
"draw_networkx_edge_labels does not support multiedges."
) from err
except StopIteration:
pass
text_items = {}
for (n1, n2), label in labels.items():
(x1, y1) = pos[n1]
(x2, y2) = pos[n2]
(x, y) = (
x1 * label_pos + x2 * (1.0 - label_pos),
y1 * label_pos + y2 * (1.0 - label_pos),
)
if rotate:
# in degrees
angle = np.arctan2(y2 - y1, x2 - x1) / (2.0 * np.pi) * 360
# make label orientation "right-side-up"
if angle > 90:
angle -= 180
if angle < -90:
angle += 180
# transform data coordinate angle to screen coordinate angle
xy = np.array((x, y))
trans_angle = ax.transData.transform_angles(
np.array((angle,)), xy.reshape((1, 2))
)[0]
else:
trans_angle = 0.0
# use default box of white with white border
if bbox is None:
bbox = {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)}
if not isinstance(label, str):
label = str(label) # this makes "1" and 1 labeled the same
t = ax.text(
x,
y,
label,
size=font_size,
color=font_color,
family=font_family,
weight=font_weight,
alpha=alpha,
horizontalalignment=horizontalalignment,
verticalalignment=verticalalignment,
rotation=trans_angle,
transform=ax.transData,
bbox=bbox,
zorder=1,
clip_on=clip_on,
)
text_items[(n1, n2)] = t
ax.tick_params(
axis="both",
which="both",
bottom=False,
left=False,
labelbottom=False,
labelleft=False,
)
return text_items
def draw_circular(G, **kwargs):
"""Draw the graph `G` with a circular layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.circular_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called. For
repeated drawing it is much more efficient to call
`~networkx.drawing.layout.circular_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.circular_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_circular(G)
See Also
--------
:func:`~networkx.drawing.layout.circular_layout`
"""
draw(G, circular_layout(G), **kwargs)
def draw_kamada_kawai(G, **kwargs):
"""Draw the graph `G` with a Kamada-Kawai force-directed layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.kamada_kawai_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.kamada_kawai_layout` directly and reuse the
result::
>>> G = nx.complete_graph(5)
>>> pos = nx.kamada_kawai_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_kamada_kawai(G)
See Also
--------
:func:`~networkx.drawing.layout.kamada_kawai_layout`
"""
draw(G, kamada_kawai_layout(G), **kwargs)
def draw_random(G, **kwargs):
"""Draw the graph `G` with a random layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.random_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.random_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.random_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.lollipop_graph(4, 3)
>>> nx.draw_random(G)
See Also
--------
:func:`~networkx.drawing.layout.random_layout`
"""
draw(G, random_layout(G), **kwargs)
def draw_spectral(G, **kwargs):
"""Draw the graph `G` with a spectral 2D layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.spectral_layout(G), **kwargs)
For more information about how node positions are determined, see
`~networkx.drawing.layout.spectral_layout`.
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.spectral_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.spectral_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(5)
>>> nx.draw_spectral(G)
See Also
--------
:func:`~networkx.drawing.layout.spectral_layout`
"""
draw(G, spectral_layout(G), **kwargs)
def draw_spring(G, **kwargs):
"""Draw the graph `G` with a spring layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.spring_layout(G), **kwargs)
Parameters
----------
G : graph
A networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
`~networkx.drawing.layout.spring_layout` is also the default layout for
`draw`, so this function is equivalent to `draw`.
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.spring_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.spring_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(20)
>>> nx.draw_spring(G)
See Also
--------
draw
:func:`~networkx.drawing.layout.spring_layout`
"""
draw(G, spring_layout(G), **kwargs)
def draw_shell(G, nlist=None, **kwargs):
"""Draw networkx graph `G` with shell layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.shell_layout(G, nlist=nlist), **kwargs)
Parameters
----------
G : graph
A networkx graph
nlist : list of list of nodes, optional
A list containing lists of nodes representing the shells.
Default is `None`, meaning all nodes are in a single shell.
See `~networkx.drawing.layout.shell_layout` for details.
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.shell_layout` directly and reuse the result::
>>> G = nx.complete_graph(5)
>>> pos = nx.shell_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(4)
>>> shells = [[0], [1, 2, 3]]
>>> nx.draw_shell(G, nlist=shells)
See Also
--------
:func:`~networkx.drawing.layout.shell_layout`
"""
draw(G, shell_layout(G, nlist=nlist), **kwargs)
def draw_planar(G, **kwargs):
"""Draw a planar networkx graph `G` with planar layout.
This is a convenience function equivalent to::
nx.draw(G, pos=nx.planar_layout(G), **kwargs)
Parameters
----------
G : graph
A planar networkx graph
kwargs : optional keywords
See `draw_networkx` for a description of optional keywords.
Raises
------
NetworkXException
When `G` is not planar
Notes
-----
The layout is computed each time this function is called.
For repeated drawing it is much more efficient to call
`~networkx.drawing.layout.planar_layout` directly and reuse the result::
>>> G = nx.path_graph(5)
>>> pos = nx.planar_layout(G)
>>> nx.draw(G, pos=pos) # Draw the original graph
>>> # Draw a subgraph, reusing the same node positions
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red")
Examples
--------
>>> G = nx.path_graph(4)
>>> nx.draw_planar(G)
See Also
--------
:func:`~networkx.drawing.layout.planar_layout`
"""
draw(G, planar_layout(G), **kwargs)
def apply_alpha(colors, alpha, elem_list, cmap=None, vmin=None, vmax=None):
"""Apply an alpha (or list of alphas) to the colors provided.
Parameters
----------
colors : color string or array of floats (default='r')
Color of element. Can be a single color format string,
or a sequence of colors with the same length as nodelist.
If numeric values are specified they will be mapped to
colors using the cmap and vmin,vmax parameters. See
matplotlib.scatter for more details.
alpha : float or array of floats
Alpha values for elements. This can be a single alpha value, in
which case it will be applied to all the elements of color. Otherwise,
if it is an array, the elements of alpha will be applied to the colors
in order (cycling through alpha multiple times if necessary).
elem_list : array of networkx objects
The list of elements which are being colored. These could be nodes,
edges or labels.
cmap : matplotlib colormap
Color map for use if colors is a list of floats corresponding to points
on a color mapping.
vmin, vmax : float
Minimum and maximum values for normalizing colors if a colormap is used
Returns
-------
rgba_colors : numpy ndarray
Array containing RGBA format values for each of the node colours.
"""
from itertools import cycle, islice
import matplotlib as mpl
import matplotlib.cm # call as mpl.cm
import matplotlib.colors # call as mpl.colors
import numpy as np
# If we have been provided with a list of numbers as long as elem_list,
# apply the color mapping.
if len(colors) == len(elem_list) and isinstance(colors[0], Number):
mapper = mpl.cm.ScalarMappable(cmap=cmap)
mapper.set_clim(vmin, vmax)
rgba_colors = mapper.to_rgba(colors)
# Otherwise, convert colors to matplotlib's RGB using the colorConverter
# object. These are converted to numpy ndarrays to be consistent with the
# to_rgba method of ScalarMappable.
else:
try:
rgba_colors = np.array([mpl.colors.colorConverter.to_rgba(colors)])
except ValueError:
rgba_colors = np.array(
[mpl.colors.colorConverter.to_rgba(color) for color in colors]
)
# Set the final column of the rgba_colors to have the relevant alpha values
try:
# If alpha is longer than the number of colors, resize to the number of
# elements. Also, if rgba_colors.size (the number of elements of
# rgba_colors) is the same as the number of elements, resize the array,
# to avoid it being interpreted as a colormap by scatter()
if len(alpha) > len(rgba_colors) or rgba_colors.size == len(elem_list):
rgba_colors = np.resize(rgba_colors, (len(elem_list), 4))
rgba_colors[1:, 0] = rgba_colors[0, 0]
rgba_colors[1:, 1] = rgba_colors[0, 1]
rgba_colors[1:, 2] = rgba_colors[0, 2]
rgba_colors[:, 3] = list(islice(cycle(alpha), len(rgba_colors)))
except TypeError:
rgba_colors[:, -1] = alpha
return rgba_colors
|