Spaces:
Running
Running
File size: 27,576 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 |
"""Unit tests for matplotlib drawing functions."""
import itertools
import os
import warnings
import pytest
mpl = pytest.importorskip("matplotlib")
np = pytest.importorskip("numpy")
mpl.use("PS")
plt = pytest.importorskip("matplotlib.pyplot")
plt.rcParams["text.usetex"] = False
import networkx as nx
barbell = nx.barbell_graph(4, 6)
def test_draw():
try:
functions = [
nx.draw_circular,
nx.draw_kamada_kawai,
nx.draw_planar,
nx.draw_random,
nx.draw_spectral,
nx.draw_spring,
nx.draw_shell,
]
options = [{"node_color": "black", "node_size": 100, "width": 3}]
for function, option in itertools.product(functions, options):
function(barbell, **option)
plt.savefig("test.ps")
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_draw_shell_nlist():
try:
nlist = [list(range(4)), list(range(4, 10)), list(range(10, 14))]
nx.draw_shell(barbell, nlist=nlist)
plt.savefig("test.ps")
finally:
try:
os.unlink("test.ps")
except OSError:
pass
def test_edge_colormap():
colors = range(barbell.number_of_edges())
nx.draw_spring(
barbell, edge_color=colors, width=4, edge_cmap=plt.cm.Blues, with_labels=True
)
# plt.show()
def test_arrows():
nx.draw_spring(barbell.to_directed())
# plt.show()
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_undirected(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges
drawn with a LineCollection"""
G = nx.path_graph(3)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
assert mpl.colors.same_color(drawn_edges.get_color(), expected)
@pytest.mark.parametrize(
("edge_color", "expected"),
(
(None, "black"), # Default
("r", "red"), # Non-default color string
(["r"], "red"), # Single non-default color in a list
((1.0, 1.0, 0.0), "yellow"), # single color as rgb tuple
([(1.0, 1.0, 0.0)], "yellow"), # single color as rgb tuple in list
((0, 1, 0, 1), "lime"), # single color as rgba tuple
([(0, 1, 0, 1)], "lime"), # single color as rgba tuple in list
("#0000ff", "blue"), # single color hex code
(["#0000ff"], "blue"), # hex code in list
),
)
@pytest.mark.parametrize("edgelist", (None, [(0, 1)]))
def test_single_edge_color_directed(edge_color, expected, edgelist):
"""Tests ways of specifying all edges have a single color for edges drawn
with FancyArrowPatches"""
G = nx.path_graph(3, create_using=nx.DiGraph)
drawn_edges = nx.draw_networkx_edges(
G, pos=nx.random_layout(G), edgelist=edgelist, edge_color=edge_color
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_tuple_interpretation():
"""If edge_color is a sequence with the same length as edgelist, then each
value in edge_color is mapped onto each edge via colormap."""
G = nx.path_graph(6, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
# num edges != 3 or 4 --> edge_color interpreted as rgb(a)
for ec in ((0, 0, 1), (0, 0, 1, 1)):
# More than 4 edges
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=ec)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# Fewer than 3 edges
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2)], edge_color=ec
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), ec)
# num edges == 3, len(edge_color) == 4: interpreted as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == 4, len(edge_color) == 3: interpreted as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1)
)
for fap in drawn_edges:
assert mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 3: interpreted with cmap, *not* as rgb
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3)], edge_color=(0, 0, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
# num edges == len(edge_color) == 4: interpreted with cmap, *not* as rgba
drawn_edges = nx.draw_networkx_edges(
G, pos, edgelist=[(0, 1), (1, 2), (2, 3), (3, 4)], edge_color=(0, 0, 1, 1)
)
assert mpl.colors.same_color(
drawn_edges[0].get_edgecolor(), drawn_edges[1].get_edgecolor()
)
assert mpl.colors.same_color(
drawn_edges[2].get_edgecolor(), drawn_edges[3].get_edgecolor()
)
for fap in drawn_edges:
assert not mpl.colors.same_color(fap.get_edgecolor(), "blue")
def test_fewer_edge_colors_than_num_edges_directed():
"""Test that the edge colors are cycled when there are fewer specified
colors than edges."""
G = barbell.to_directed()
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b")
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, itertools.cycle(edgecolors)):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_more_edge_colors_than_num_edges_directed():
"""Test that extra edge colors are ignored when there are more specified
colors than edges."""
G = nx.path_graph(4, create_using=nx.DiGraph) # 3 edges
pos = nx.random_layout(barbell)
edgecolors = ("r", "g", "b", "c") # 4 edge colors
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=edgecolors)
for fap, expected in zip(drawn_edges, edgecolors[:-1]):
assert mpl.colors.same_color(fap.get_edgecolor(), expected)
def test_edge_color_string_with_global_alpha_undirected():
edge_collection = nx.draw_networkx_edges(
barbell,
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
ec = edge_collection.get_color().squeeze() # as rgba tuple
assert len(edge_collection.get_paths()) == 2
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
def test_edge_color_string_with_global_alpha_directed():
drawn_edges = nx.draw_networkx_edges(
barbell.to_directed(),
pos=nx.random_layout(barbell),
edgelist=[(0, 1), (1, 2)],
edge_color="purple",
alpha=0.2,
)
assert len(drawn_edges) == 2
for fap in drawn_edges:
ec = fap.get_edgecolor() # As rgba tuple
assert mpl.colors.same_color(ec[:-1], "purple")
assert ec[-1] == 0.2
@pytest.mark.parametrize("graph_type", (nx.Graph, nx.DiGraph))
def test_edge_width_default_value(graph_type):
"""Test the default linewidth for edges drawn either via LineCollection or
FancyArrowPatches."""
G = nx.path_graph(2, create_using=graph_type)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos)
if isinstance(drawn_edges, list): # directed case: list of FancyArrowPatch
drawn_edges = drawn_edges[0]
assert drawn_edges.get_linewidth() == 1
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_undirected(edgewidth, expected):
G = nx.path_graph(4)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges.get_paths()) == 3
assert drawn_edges.get_linewidth() == expected
@pytest.mark.parametrize(
("edgewidth", "expected"),
(
(3, 3), # single-value, non-default
([3], 3), # Single value as a list
),
)
def test_edge_width_single_value_directed(edgewidth, expected):
G = nx.path_graph(4, create_using=nx.DiGraph)
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, width=edgewidth)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linewidth() == expected
@pytest.mark.parametrize(
"edgelist",
(
[(0, 1), (1, 2), (2, 3)], # one width specification per edge
None, # fewer widths than edges - widths cycle
[(0, 1), (1, 2)], # More widths than edges - unused widths ignored
),
)
def test_edge_width_sequence(edgelist):
G = barbell.to_directed()
pos = nx.random_layout(G)
widths = (0.5, 2.0, 12.0)
drawn_edges = nx.draw_networkx_edges(G, pos, edgelist=edgelist, width=widths)
for fap, expected_width in zip(drawn_edges, itertools.cycle(widths)):
assert fap.get_linewidth() == expected_width
def test_edge_color_with_edge_vmin_vmax():
"""Test that edge_vmin and edge_vmax properly set the dynamic range of the
color map when num edges == len(edge_colors)."""
G = nx.path_graph(3, create_using=nx.DiGraph)
pos = nx.random_layout(G)
# Extract colors from the original (unscaled) colormap
drawn_edges = nx.draw_networkx_edges(G, pos, edge_color=[0, 1.0])
orig_colors = [e.get_edgecolor() for e in drawn_edges]
# Colors from scaled colormap
drawn_edges = nx.draw_networkx_edges(
G, pos, edge_color=[0.2, 0.8], edge_vmin=0.2, edge_vmax=0.8
)
scaled_colors = [e.get_edgecolor() for e in drawn_edges]
assert mpl.colors.same_color(orig_colors, scaled_colors)
def test_directed_edges_linestyle_default():
"""Test default linestyle for edges drawn with FancyArrowPatches."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
# edge with default style
drawn_edges = nx.draw_networkx_edges(G, pos)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == "solid"
@pytest.mark.parametrize(
"style",
(
"dashed", # edge with string style
"--", # edge with simplified string style
(1, (1, 1)), # edge with (offset, onoffseq) style
),
)
def test_directed_edges_linestyle_single_value(style):
"""Tests support for specifying linestyles with a single value to be applied to
all edges in ``draw_networkx_edges`` for FancyArrowPatch outputs
(e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style)
assert len(drawn_edges) == 3
for fap in drawn_edges:
assert fap.get_linestyle() == style
@pytest.mark.parametrize(
"style_seq",
(
["dashed"], # edge with string style in list
["--"], # edge with simplified string style in list
[(1, (1, 1))], # edge with (offset, onoffseq) style in list
["--", "-", ":"], # edges with styles for each edge
["--", "-"], # edges with fewer styles than edges (styles cycle)
["--", "-", ":", "-."], # edges with more styles than edges (extra unused)
),
)
def test_directed_edges_linestyle_sequence(style_seq):
"""Tests support for specifying linestyles with sequences in
``draw_networkx_edges`` for FancyArrowPatch outputs (e.g. directed edges)."""
G = nx.path_graph(4, create_using=nx.DiGraph) # Graph with 3 edges
pos = {n: (n, n) for n in range(len(G))}
drawn_edges = nx.draw_networkx_edges(G, pos, style=style_seq)
assert len(drawn_edges) == 3
for fap, style in zip(drawn_edges, itertools.cycle(style_seq)):
assert fap.get_linestyle() == style
def test_labels_and_colors():
G = nx.cubical_graph()
pos = nx.spring_layout(G) # positions for all nodes
# nodes
nx.draw_networkx_nodes(
G, pos, nodelist=[0, 1, 2, 3], node_color="r", node_size=500, alpha=0.75
)
nx.draw_networkx_nodes(
G,
pos,
nodelist=[4, 5, 6, 7],
node_color="b",
node_size=500,
alpha=[0.25, 0.5, 0.75, 1.0],
)
# edges
nx.draw_networkx_edges(G, pos, width=1.0, alpha=0.5)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(0, 1), (1, 2), (2, 3), (3, 0)],
width=8,
alpha=0.5,
edge_color="r",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
width=8,
alpha=0.5,
edge_color="b",
)
nx.draw_networkx_edges(
G,
pos,
edgelist=[(4, 5), (5, 6), (6, 7), (7, 4)],
arrows=True,
min_source_margin=0.5,
min_target_margin=0.75,
width=8,
edge_color="b",
)
# some math labels
labels = {}
labels[0] = r"$a$"
labels[1] = r"$b$"
labels[2] = r"$c$"
labels[3] = r"$d$"
labels[4] = r"$\alpha$"
labels[5] = r"$\beta$"
labels[6] = r"$\gamma$"
labels[7] = r"$\delta$"
nx.draw_networkx_labels(G, pos, labels, font_size=16)
nx.draw_networkx_edge_labels(G, pos, edge_labels=None, rotate=False)
nx.draw_networkx_edge_labels(G, pos, edge_labels={(4, 5): "4-5"})
# plt.show()
@pytest.mark.mpl_image_compare
def test_house_with_colors():
G = nx.house_graph()
# explicitly set positions
fig, ax = plt.subplots()
pos = {0: (0, 0), 1: (1, 0), 2: (0, 1), 3: (1, 1), 4: (0.5, 2.0)}
# Plot nodes with different properties for the "wall" and "roof" nodes
nx.draw_networkx_nodes(
G,
pos,
node_size=3000,
nodelist=[0, 1, 2, 3],
node_color="tab:blue",
)
nx.draw_networkx_nodes(
G, pos, node_size=2000, nodelist=[4], node_color="tab:orange"
)
nx.draw_networkx_edges(G, pos, alpha=0.5, width=6)
# Customize axes
ax.margins(0.11)
plt.tight_layout()
plt.axis("off")
return fig
def test_axes():
fig, ax = plt.subplots()
nx.draw(barbell, ax=ax)
nx.draw_networkx_edge_labels(barbell, nx.circular_layout(barbell), ax=ax)
def test_empty_graph():
G = nx.Graph()
nx.draw(G)
def test_draw_empty_nodes_return_values():
# See Issue #3833
import matplotlib.collections # call as mpl.collections
G = nx.Graph([(1, 2), (2, 3)])
DG = nx.DiGraph([(1, 2), (2, 3)])
pos = nx.circular_layout(G)
assert isinstance(
nx.draw_networkx_nodes(G, pos, nodelist=[]), mpl.collections.PathCollection
)
assert isinstance(
nx.draw_networkx_nodes(DG, pos, nodelist=[]), mpl.collections.PathCollection
)
# drawing empty edges used to return an empty LineCollection or empty list.
# Now it is always an empty list (because edges are now lists of FancyArrows)
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=True) == []
assert nx.draw_networkx_edges(G, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=False) == []
assert nx.draw_networkx_edges(DG, pos, edgelist=[], arrows=True) == []
def test_multigraph_edgelist_tuples():
# See Issue #3295
G = nx.path_graph(3, create_using=nx.MultiDiGraph)
nx.draw_networkx(G, edgelist=[(0, 1, 0)])
nx.draw_networkx(G, edgelist=[(0, 1, 0)], node_size=[10, 20, 0])
def test_alpha_iter():
pos = nx.random_layout(barbell)
fig = plt.figure()
# with fewer alpha elements than nodes
fig.add_subplot(131) # Each test in a new axis object
nx.draw_networkx_nodes(barbell, pos, alpha=[0.1, 0.2])
# with equal alpha elements and nodes
num_nodes = len(barbell.nodes)
alpha = [x / num_nodes for x in range(num_nodes)]
colors = range(num_nodes)
fig.add_subplot(132)
nx.draw_networkx_nodes(barbell, pos, node_color=colors, alpha=alpha)
# with more alpha elements than nodes
alpha.append(1)
fig.add_subplot(133)
nx.draw_networkx_nodes(barbell, pos, alpha=alpha)
def test_error_invalid_kwds():
with pytest.raises(ValueError, match="Received invalid argument"):
nx.draw(barbell, foo="bar")
def test_draw_networkx_arrowsize_incorrect_size():
G = nx.DiGraph([(0, 1), (0, 2), (0, 3), (1, 3)])
arrowsize = [1, 2, 3]
with pytest.raises(
ValueError, match="arrowsize should have the same length as edgelist"
):
nx.draw(G, arrowsize=arrowsize)
@pytest.mark.parametrize("arrowsize", (30, [10, 20, 30]))
def test_draw_edges_arrowsize(arrowsize):
G = nx.DiGraph([(0, 1), (0, 2), (1, 2)])
pos = {0: (0, 0), 1: (0, 1), 2: (1, 0)}
edges = nx.draw_networkx_edges(G, pos=pos, arrowsize=arrowsize)
arrowsize = itertools.repeat(arrowsize) if isinstance(arrowsize, int) else arrowsize
for fap, expected in zip(edges, arrowsize):
assert isinstance(fap, mpl.patches.FancyArrowPatch)
assert fap.get_mutation_scale() == expected
def test_np_edgelist():
# see issue #4129
nx.draw_networkx(barbell, edgelist=np.array([(0, 2), (0, 3)]))
def test_draw_nodes_missing_node_from_position():
G = nx.path_graph(3)
pos = {0: (0, 0), 1: (1, 1)} # No position for node 2
with pytest.raises(nx.NetworkXError, match="has no position"):
nx.draw_networkx_nodes(G, pos)
# NOTE: parametrizing on marker to test both branches of internal
# nx.draw_networkx_edges.to_marker_edge function
@pytest.mark.parametrize("node_shape", ("o", "s"))
def test_draw_edges_min_source_target_margins(node_shape):
"""Test that there is a wider gap between the node and the start of an
incident edge when min_source_margin is specified.
This test checks that the use of min_{source/target}_margin kwargs result
in shorter (more padding) between the edges and source and target nodes.
As a crude visual example, let 's' and 't' represent source and target
nodes, respectively:
Default:
s-----------------------------t
With margins:
s ----------------------- t
"""
# Create a single axis object to get consistent pixel coords across
# multiple draws
fig, ax = plt.subplots()
G = nx.DiGraph([(0, 1)])
pos = {0: (0, 0), 1: (1, 0)} # horizontal layout
# Get leftmost and rightmost points of the FancyArrowPatch object
# representing the edge between nodes 0 and 1 (in pixel coordinates)
default_patch = nx.draw_networkx_edges(G, pos, ax=ax, node_shape=node_shape)[0]
default_extent = default_patch.get_extents().corners()[::2, 0]
# Now, do the same but with "padding" for the source and target via the
# min_{source/target}_margin kwargs
padded_patch = nx.draw_networkx_edges(
G,
pos,
ax=ax,
node_shape=node_shape,
min_source_margin=100,
min_target_margin=100,
)[0]
padded_extent = padded_patch.get_extents().corners()[::2, 0]
# With padding, the left-most extent of the edge should be further to the
# right
assert padded_extent[0] > default_extent[0]
# And the rightmost extent of the edge, further to the left
assert padded_extent[1] < default_extent[1]
def test_nonzero_selfloop_with_single_node():
"""Ensure that selfloop extent is non-zero when there is only one node."""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with single node + self loop
G = nx.DiGraph()
G.add_node(0)
G.add_edge(0, 0)
# Draw
patch = nx.draw_networkx_edges(G, {0: (0, 0)})[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
def test_nonzero_selfloop_with_single_edge_in_edgelist():
"""Ensure that selfloop extent is non-zero when only a single edge is
specified in the edgelist.
"""
# Create explicit axis object for test
fig, ax = plt.subplots()
# Graph with selfloop
G = nx.path_graph(2, create_using=nx.DiGraph)
G.add_edge(1, 1)
pos = {n: (n, n) for n in G.nodes}
# Draw only the selfloop edge via the `edgelist` kwarg
patch = nx.draw_networkx_edges(G, pos, edgelist=[(1, 1)])[0]
# The resulting patch must have non-zero extent
bbox = patch.get_extents()
assert bbox.width > 0 and bbox.height > 0
# Cleanup
plt.delaxes(ax)
def test_apply_alpha():
"""Test apply_alpha when there is a mismatch between the number of
supplied colors and elements.
"""
nodelist = [0, 1, 2]
colorlist = ["r", "g", "b"]
alpha = 0.5
rgba_colors = nx.drawing.nx_pylab.apply_alpha(colorlist, alpha, nodelist)
assert all(rgba_colors[:, -1] == alpha)
def test_draw_edges_toggling_with_arrows_kwarg():
"""
The `arrows` keyword argument is used as a 3-way switch to select which
type of object to use for drawing edges:
- ``arrows=None`` -> default (FancyArrowPatches for directed, else LineCollection)
- ``arrows=True`` -> FancyArrowPatches
- ``arrows=False`` -> LineCollection
"""
import matplotlib.collections
import matplotlib.patches
UG = nx.path_graph(3)
DG = nx.path_graph(3, create_using=nx.DiGraph)
pos = {n: (n, n) for n in UG}
# Use FancyArrowPatches when arrows=True, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=True)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
# Use LineCollection when arrows=False, regardless of graph type
for G in (UG, DG):
edges = nx.draw_networkx_edges(G, pos, arrows=False)
assert isinstance(edges, mpl.collections.LineCollection)
# Default behavior when arrows=None: FAPs for directed, LC's for undirected
edges = nx.draw_networkx_edges(UG, pos)
assert isinstance(edges, mpl.collections.LineCollection)
edges = nx.draw_networkx_edges(DG, pos)
assert len(edges) == len(G.edges)
assert isinstance(edges[0], mpl.patches.FancyArrowPatch)
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_undirected(drawing_func):
import matplotlib.collections
G = nx.path_graph(3)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert any(isinstance(c, mpl.collections.LineCollection) for c in ax.collections)
assert not ax.patches
plt.delaxes(ax)
@pytest.mark.parametrize("drawing_func", (nx.draw, nx.draw_networkx))
def test_draw_networkx_arrows_default_directed(drawing_func):
import matplotlib.collections
G = nx.path_graph(3, create_using=nx.DiGraph)
fig, ax = plt.subplots()
drawing_func(G, ax=ax)
assert not any(
isinstance(c, mpl.collections.LineCollection) for c in ax.collections
)
assert ax.patches
plt.delaxes(ax)
def test_edgelist_kwarg_not_ignored():
# See gh-4994
G = nx.path_graph(3)
G.add_edge(0, 0)
fig, ax = plt.subplots()
nx.draw(G, edgelist=[(0, 1), (1, 2)], ax=ax) # Exclude self-loop from edgelist
assert not ax.patches
plt.delaxes(ax)
def test_draw_networkx_edge_label_multiedge_exception():
"""
draw_networkx_edge_labels should raise an informative error message when
the edge label includes keys
"""
exception_msg = "draw_networkx_edge_labels does not support multiedges"
G = nx.MultiGraph()
G.add_edge(0, 1, weight=10)
G.add_edge(0, 1, weight=20)
edge_labels = nx.get_edge_attributes(G, "weight") # Includes edge keys
pos = {n: (n, n) for n in G}
with pytest.raises(nx.NetworkXError, match=exception_msg):
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
def test_draw_networkx_edge_label_empty_dict():
"""Regression test for draw_networkx_edge_labels with empty dict. See
gh-5372."""
G = nx.path_graph(3)
pos = {n: (n, n) for n in G.nodes}
assert nx.draw_networkx_edge_labels(G, pos, edge_labels={}) == {}
def test_draw_networkx_edges_undirected_selfloop_colors():
"""When an edgelist is supplied along with a sequence of colors, check that
the self-loops have the correct colors."""
fig, ax = plt.subplots()
# Edge list and corresponding colors
edgelist = [(1, 3), (1, 2), (2, 3), (1, 1), (3, 3), (2, 2)]
edge_colors = ["pink", "cyan", "black", "red", "blue", "green"]
G = nx.Graph(edgelist)
pos = {n: (n, n) for n in G.nodes}
nx.draw_networkx_edges(G, pos, ax=ax, edgelist=edgelist, edge_color=edge_colors)
# Verify that there are three fancy arrow patches (1 per self loop)
assert len(ax.patches) == 3
# These are points that should be contained in the self loops. For example,
# sl_points[0] will be (1, 1.1), which is inside the "path" of the first
# self-loop but outside the others
sl_points = np.array(edgelist[-3:]) + np.array([0, 0.1])
# Check that the mapping between self-loop locations and their colors is
# correct
for fap, clr, slp in zip(ax.patches, edge_colors[-3:], sl_points):
assert fap.get_path().contains_point(slp)
assert mpl.colors.same_color(fap.get_edgecolor(), clr)
plt.delaxes(ax)
@pytest.mark.parametrize(
"fap_only_kwarg", # Non-default values for kwargs that only apply to FAPs
(
{"arrowstyle": "-"},
{"arrowsize": 20},
{"connectionstyle": "arc3,rad=0.2"},
{"min_source_margin": 10},
{"min_target_margin": 10},
),
)
def test_user_warnings_for_unused_edge_drawing_kwargs(fap_only_kwarg):
"""Users should get a warning when they specify a non-default value for
one of the kwargs that applies only to edges drawn with FancyArrowPatches,
but FancyArrowPatches aren't being used under the hood."""
G = nx.path_graph(3)
pos = {n: (n, n) for n in G}
fig, ax = plt.subplots()
# By default, an undirected graph will use LineCollection to represent
# the edges
kwarg_name = list(fap_only_kwarg.keys())[0]
with pytest.warns(
UserWarning, match=f"\n\nThe {kwarg_name} keyword argument is not applicable"
):
nx.draw_networkx_edges(G, pos, ax=ax, **fap_only_kwarg)
# FancyArrowPatches are always used when `arrows=True` is specified.
# Check that warnings are *not* raised in this case
with warnings.catch_warnings():
# Escalate warnings -> errors so tests fail if warnings are raised
warnings.simplefilter("error")
nx.draw_networkx_edges(G, pos, ax=ax, arrows=True, **fap_only_kwarg)
plt.delaxes(ax)
|