File size: 15,554 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
Generators for some directed graphs, including growing network (GN) graphs and
scale-free graphs.

"""

import numbers
from collections import Counter

import networkx as nx
from networkx.generators.classic import empty_graph
from networkx.utils import discrete_sequence, py_random_state, weighted_choice

__all__ = [
    "gn_graph",
    "gnc_graph",
    "gnr_graph",
    "random_k_out_graph",
    "scale_free_graph",
]


@py_random_state(3)
@nx._dispatch(graphs=None)
def gn_graph(n, kernel=None, create_using=None, seed=None):
    """Returns the growing network (GN) digraph with `n` nodes.

    The GN graph is built by adding nodes one at a time with a link to one
    previously added node.  The target node for the link is chosen with
    probability based on degree.  The default attachment kernel is a linear
    function of the degree of a node.

    The graph is always a (directed) tree.

    Parameters
    ----------
    n : int
        The number of nodes for the generated graph.
    kernel : function
        The attachment kernel.
    create_using : NetworkX graph constructor, optional (default DiGraph)
        Graph type to create. If graph instance, then cleared before populated.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Examples
    --------
    To create the undirected GN graph, use the :meth:`~DiGraph.to_directed`
    method::

    >>> D = nx.gn_graph(10)  # the GN graph
    >>> G = D.to_undirected()  # the undirected version

    To specify an attachment kernel, use the `kernel` keyword argument::

    >>> D = nx.gn_graph(10, kernel=lambda x: x ** 1.5)  # A_k = k^1.5

    References
    ----------
    .. [1] P. L. Krapivsky and S. Redner,
           Organization of Growing Random Networks,
           Phys. Rev. E, 63, 066123, 2001.
    """
    G = empty_graph(1, create_using, default=nx.DiGraph)
    if not G.is_directed():
        raise nx.NetworkXError("create_using must indicate a Directed Graph")

    if kernel is None:

        def kernel(x):
            return x

    if n == 1:
        return G

    G.add_edge(1, 0)  # get started
    ds = [1, 1]  # degree sequence

    for source in range(2, n):
        # compute distribution from kernel and degree
        dist = [kernel(d) for d in ds]
        # choose target from discrete distribution
        target = discrete_sequence(1, distribution=dist, seed=seed)[0]
        G.add_edge(source, target)
        ds.append(1)  # the source has only one link (degree one)
        ds[target] += 1  # add one to the target link degree
    return G


@py_random_state(3)
@nx._dispatch(graphs=None)
def gnr_graph(n, p, create_using=None, seed=None):
    """Returns the growing network with redirection (GNR) digraph with `n`
    nodes and redirection probability `p`.

    The GNR graph is built by adding nodes one at a time with a link to one
    previously added node.  The previous target node is chosen uniformly at
    random.  With probability `p` the link is instead "redirected" to the
    successor node of the target.

    The graph is always a (directed) tree.

    Parameters
    ----------
    n : int
        The number of nodes for the generated graph.
    p : float
        The redirection probability.
    create_using : NetworkX graph constructor, optional (default DiGraph)
        Graph type to create. If graph instance, then cleared before populated.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Examples
    --------
    To create the undirected GNR graph, use the :meth:`~DiGraph.to_directed`
    method::

    >>> D = nx.gnr_graph(10, 0.5)  # the GNR graph
    >>> G = D.to_undirected()  # the undirected version

    References
    ----------
    .. [1] P. L. Krapivsky and S. Redner,
           Organization of Growing Random Networks,
           Phys. Rev. E, 63, 066123, 2001.
    """
    G = empty_graph(1, create_using, default=nx.DiGraph)
    if not G.is_directed():
        raise nx.NetworkXError("create_using must indicate a Directed Graph")

    if n == 1:
        return G

    for source in range(1, n):
        target = seed.randrange(0, source)
        if seed.random() < p and target != 0:
            target = next(G.successors(target))
        G.add_edge(source, target)
    return G


@py_random_state(2)
@nx._dispatch(graphs=None)
def gnc_graph(n, create_using=None, seed=None):
    """Returns the growing network with copying (GNC) digraph with `n` nodes.

    The GNC graph is built by adding nodes one at a time with a link to one
    previously added node (chosen uniformly at random) and to all of that
    node's successors.

    Parameters
    ----------
    n : int
        The number of nodes for the generated graph.
    create_using : NetworkX graph constructor, optional (default DiGraph)
        Graph type to create. If graph instance, then cleared before populated.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    References
    ----------
    .. [1] P. L. Krapivsky and S. Redner,
           Network Growth by Copying,
           Phys. Rev. E, 71, 036118, 2005k.},
    """
    G = empty_graph(1, create_using, default=nx.DiGraph)
    if not G.is_directed():
        raise nx.NetworkXError("create_using must indicate a Directed Graph")

    if n == 1:
        return G

    for source in range(1, n):
        target = seed.randrange(0, source)
        for succ in G.successors(target):
            G.add_edge(source, succ)
        G.add_edge(source, target)
    return G


@py_random_state(6)
@nx._dispatch(graphs=None)
def scale_free_graph(
    n,
    alpha=0.41,
    beta=0.54,
    gamma=0.05,
    delta_in=0.2,
    delta_out=0,
    seed=None,
    initial_graph=None,
):
    """Returns a scale-free directed graph.

    Parameters
    ----------
    n : integer
        Number of nodes in graph
    alpha : float
        Probability for adding a new node connected to an existing node
        chosen randomly according to the in-degree distribution.
    beta : float
        Probability for adding an edge between two existing nodes.
        One existing node is chosen randomly according the in-degree
        distribution and the other chosen randomly according to the out-degree
        distribution.
    gamma : float
        Probability for adding a new node connected to an existing node
        chosen randomly according to the out-degree distribution.
    delta_in : float
        Bias for choosing nodes from in-degree distribution.
    delta_out : float
        Bias for choosing nodes from out-degree distribution.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    initial_graph : MultiDiGraph instance, optional
        Build the scale-free graph starting from this initial MultiDiGraph,
        if provided.

    Returns
    -------
    MultiDiGraph

    Examples
    --------
    Create a scale-free graph on one hundred nodes::

    >>> G = nx.scale_free_graph(100)

    Notes
    -----
    The sum of `alpha`, `beta`, and `gamma` must be 1.

    References
    ----------
    .. [1] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan,
           Directed scale-free graphs,
           Proceedings of the fourteenth annual ACM-SIAM Symposium on
           Discrete Algorithms, 132--139, 2003.
    """

    def _choose_node(candidates, node_list, delta):
        if delta > 0:
            bias_sum = len(node_list) * delta
            p_delta = bias_sum / (bias_sum + len(candidates))
            if seed.random() < p_delta:
                return seed.choice(node_list)
        return seed.choice(candidates)

    if initial_graph is not None and hasattr(initial_graph, "_adj"):
        if not isinstance(initial_graph, nx.MultiDiGraph):
            raise nx.NetworkXError("initial_graph must be a MultiDiGraph.")
        G = initial_graph
    else:
        # Start with 3-cycle
        G = nx.MultiDiGraph([(0, 1), (1, 2), (2, 0)])

    if alpha <= 0:
        raise ValueError("alpha must be > 0.")
    if beta <= 0:
        raise ValueError("beta must be > 0.")
    if gamma <= 0:
        raise ValueError("gamma must be > 0.")

    if abs(alpha + beta + gamma - 1.0) >= 1e-9:
        raise ValueError("alpha+beta+gamma must equal 1.")

    if delta_in < 0:
        raise ValueError("delta_in must be >= 0.")

    if delta_out < 0:
        raise ValueError("delta_out must be >= 0.")

    # pre-populate degree states
    vs = sum((count * [idx] for idx, count in G.out_degree()), [])
    ws = sum((count * [idx] for idx, count in G.in_degree()), [])

    # pre-populate node state
    node_list = list(G.nodes())

    # see if there already are number-based nodes
    numeric_nodes = [n for n in node_list if isinstance(n, numbers.Number)]
    if len(numeric_nodes) > 0:
        # set cursor for new nodes appropriately
        cursor = max(int(n.real) for n in numeric_nodes) + 1
    else:
        # or start at zero
        cursor = 0

    while len(G) < n:
        r = seed.random()

        # random choice in alpha,beta,gamma ranges
        if r < alpha:
            # alpha
            # add new node v
            v = cursor
            cursor += 1
            # also add to node state
            node_list.append(v)
            # choose w according to in-degree and delta_in
            w = _choose_node(ws, node_list, delta_in)

        elif r < alpha + beta:
            # beta
            # choose v according to out-degree and delta_out
            v = _choose_node(vs, node_list, delta_out)
            # choose w according to in-degree and delta_in
            w = _choose_node(ws, node_list, delta_in)

        else:
            # gamma
            # choose v according to out-degree and delta_out
            v = _choose_node(vs, node_list, delta_out)
            # add new node w
            w = cursor
            cursor += 1
            # also add to node state
            node_list.append(w)

        # add edge to graph
        G.add_edge(v, w)

        # update degree states
        vs.append(v)
        ws.append(w)

    return G


@py_random_state(4)
@nx._dispatch(graphs=None)
def random_uniform_k_out_graph(n, k, self_loops=True, with_replacement=True, seed=None):
    """Returns a random `k`-out graph with uniform attachment.

    A random `k`-out graph with uniform attachment is a multidigraph
    generated by the following algorithm. For each node *u*, choose
    `k` nodes *v* uniformly at random (with replacement). Add a
    directed edge joining *u* to *v*.

    Parameters
    ----------
    n : int
        The number of nodes in the returned graph.

    k : int
        The out-degree of each node in the returned graph.

    self_loops : bool
        If True, self-loops are allowed when generating the graph.

    with_replacement : bool
        If True, neighbors are chosen with replacement and the
        returned graph will be a directed multigraph. Otherwise,
        neighbors are chosen without replacement and the returned graph
        will be a directed graph.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    NetworkX graph
        A `k`-out-regular directed graph generated according to the
        above algorithm. It will be a multigraph if and only if
        `with_replacement` is True.

    Raises
    ------
    ValueError
        If `with_replacement` is False and `k` is greater than
        `n`.

    See also
    --------
    random_k_out_graph

    Notes
    -----
    The return digraph or multidigraph may not be strongly connected, or
    even weakly connected.

    If `with_replacement` is True, this function is similar to
    :func:`random_k_out_graph`, if that function had parameter `alpha`
    set to positive infinity.

    """
    if with_replacement:
        create_using = nx.MultiDiGraph()

        def sample(v, nodes):
            if not self_loops:
                nodes = nodes - {v}
            return (seed.choice(list(nodes)) for i in range(k))

    else:
        create_using = nx.DiGraph()

        def sample(v, nodes):
            if not self_loops:
                nodes = nodes - {v}
            return seed.sample(list(nodes), k)

    G = nx.empty_graph(n, create_using)
    nodes = set(G)
    for u in G:
        G.add_edges_from((u, v) for v in sample(u, nodes))
    return G


@py_random_state(4)
@nx._dispatch(graphs=None)
def random_k_out_graph(n, k, alpha, self_loops=True, seed=None):
    """Returns a random `k`-out graph with preferential attachment.

    A random `k`-out graph with preferential attachment is a
    multidigraph generated by the following algorithm.

    1. Begin with an empty digraph, and initially set each node to have
       weight `alpha`.
    2. Choose a node `u` with out-degree less than `k` uniformly at
       random.
    3. Choose a node `v` from with probability proportional to its
       weight.
    4. Add a directed edge from `u` to `v`, and increase the weight
       of `v` by one.
    5. If each node has out-degree `k`, halt, otherwise repeat from
       step 2.

    For more information on this model of random graph, see [1].

    Parameters
    ----------
    n : int
        The number of nodes in the returned graph.

    k : int
        The out-degree of each node in the returned graph.

    alpha : float
        A positive :class:`float` representing the initial weight of
        each vertex. A higher number means that in step 3 above, nodes
        will be chosen more like a true uniformly random sample, and a
        lower number means that nodes are more likely to be chosen as
        their in-degree increases. If this parameter is not positive, a
        :exc:`ValueError` is raised.

    self_loops : bool
        If True, self-loops are allowed when generating the graph.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    :class:`~networkx.classes.MultiDiGraph`
        A `k`-out-regular multidigraph generated according to the above
        algorithm.

    Raises
    ------
    ValueError
        If `alpha` is not positive.

    Notes
    -----
    The returned multidigraph may not be strongly connected, or even
    weakly connected.

    References
    ----------
    [1]: Peterson, Nicholas R., and Boris Pittel.
         "Distance between two random `k`-out digraphs, with and without
         preferential attachment."
         arXiv preprint arXiv:1311.5961 (2013).
         <https://arxiv.org/abs/1311.5961>

    """
    if alpha < 0:
        raise ValueError("alpha must be positive")
    G = nx.empty_graph(n, create_using=nx.MultiDiGraph)
    weights = Counter({v: alpha for v in G})
    for i in range(k * n):
        u = seed.choice([v for v, d in G.out_degree() if d < k])
        # If self-loops are not allowed, make the source node `u` have
        # weight zero.
        if not self_loops:
            adjustment = Counter({u: weights[u]})
        else:
            adjustment = Counter()
        v = weighted_choice(weights - adjustment, seed=seed)
        G.add_edge(u, v)
        weights[v] += 1
    return G