Spaces:
Running
Running
File size: 30,858 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 |
"""Generators for geometric graphs.
"""
import math
from bisect import bisect_left
from itertools import accumulate, combinations, product
import networkx as nx
from networkx.utils import py_random_state
__all__ = [
"geometric_edges",
"geographical_threshold_graph",
"navigable_small_world_graph",
"random_geometric_graph",
"soft_random_geometric_graph",
"thresholded_random_geometric_graph",
"waxman_graph",
]
@nx._dispatch(node_attrs="pos_name")
def geometric_edges(G, radius, p=2, *, pos_name="pos"):
"""Returns edge list of node pairs within `radius` of each other.
Parameters
----------
G : networkx graph
The graph from which to generate the edge list. The nodes in `G` should
have an attribute ``pos`` corresponding to the node position, which is
used to compute the distance to other nodes.
radius : scalar
The distance threshold. Edges are included in the edge list if the
distance between the two nodes is less than `radius`.
pos_name : string, default="pos"
The name of the node attribute which represents the position of each
node in 2D coordinates. Every node in the Graph must have this attribute.
p : scalar, default=2
The `Minkowski distance metric
<https://en.wikipedia.org/wiki/Minkowski_distance>`_ used to compute
distances. The default value is 2, i.e. Euclidean distance.
Returns
-------
edges : list
List of edges whose distances are less than `radius`
Notes
-----
Radius uses Minkowski distance metric `p`.
If scipy is available, `scipy.spatial.cKDTree` is used to speed computation.
Examples
--------
Create a graph with nodes that have a "pos" attribute representing 2D
coordinates.
>>> G = nx.Graph()
>>> G.add_nodes_from([
... (0, {"pos": (0, 0)}),
... (1, {"pos": (3, 0)}),
... (2, {"pos": (8, 0)}),
... ])
>>> nx.geometric_edges(G, radius=1)
[]
>>> nx.geometric_edges(G, radius=4)
[(0, 1)]
>>> nx.geometric_edges(G, radius=6)
[(0, 1), (1, 2)]
>>> nx.geometric_edges(G, radius=9)
[(0, 1), (0, 2), (1, 2)]
"""
# Input validation - every node must have a "pos" attribute
for n, pos in G.nodes(data=pos_name):
if pos is None:
raise nx.NetworkXError(
f"Node {n} (and all nodes) must have a '{pos_name}' attribute."
)
# NOTE: See _geometric_edges for the actual implementation. The reason this
# is split into two functions is to avoid the overhead of input validation
# every time the function is called internally in one of the other
# geometric generators
return _geometric_edges(G, radius, p, pos_name)
def _geometric_edges(G, radius, p, pos_name):
"""
Implements `geometric_edges` without input validation. See `geometric_edges`
for complete docstring.
"""
nodes_pos = G.nodes(data=pos_name)
try:
import scipy as sp
except ImportError:
# no scipy KDTree so compute by for-loop
radius_p = radius**p
edges = [
(u, v)
for (u, pu), (v, pv) in combinations(nodes_pos, 2)
if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius_p
]
return edges
# scipy KDTree is available
nodes, coords = list(zip(*nodes_pos))
kdtree = sp.spatial.cKDTree(coords) # Cannot provide generator.
edge_indexes = kdtree.query_pairs(radius, p)
edges = [(nodes[u], nodes[v]) for u, v in sorted(edge_indexes)]
return edges
@py_random_state(5)
@nx._dispatch(graphs=None)
def random_geometric_graph(
n, radius, dim=2, pos=None, p=2, seed=None, *, pos_name="pos"
):
"""Returns a random geometric graph in the unit cube of dimensions `dim`.
The random geometric graph model places `n` nodes uniformly at
random in the unit cube. Two nodes are joined by an edge if the
distance between the nodes is at most `radius`.
Edges are determined using a KDTree when SciPy is available.
This reduces the time complexity from $O(n^2)$ to $O(n)$.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
p : float, optional
Which Minkowski distance metric to use. `p` has to meet the condition
``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
pos_name : string, default="pos"
The name of the node attribute which represents the position
in 2D coordinates of the node in the returned graph.
Returns
-------
Graph
A random geometric graph, undirected and without self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function.
Examples
--------
Create a random geometric graph on twenty nodes where nodes are joined by
an edge if their distance is at most 0.1::
>>> G = nx.random_geometric_graph(20, 0.1)
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2::
>>> import random
>>> n = 20
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> G = nx.random_geometric_graph(n, 0.2, pos=pos)
References
----------
.. [1] Penrose, Mathew, *Random Geometric Graphs*,
Oxford Studies in Probability, 5, 2003.
"""
# TODO Is this function just a special case of the geographical
# threshold graph?
#
# half_radius = {v: radius / 2 for v in n}
# return geographical_threshold_graph(nodes, theta=1, alpha=1,
# weight=half_radius)
#
G = nx.empty_graph(n)
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in G}
nx.set_node_attributes(G, pos, pos_name)
G.add_edges_from(_geometric_edges(G, radius, p, pos_name))
return G
@py_random_state(6)
@nx._dispatch(graphs=None)
def soft_random_geometric_graph(
n, radius, dim=2, pos=None, p=2, p_dist=None, seed=None, *, pos_name="pos"
):
r"""Returns a soft random geometric graph in the unit cube.
The soft random geometric graph [1] model places `n` nodes uniformly at
random in the unit cube in dimension `dim`. Two nodes of distance, `dist`,
computed by the `p`-Minkowski distance metric are joined by an edge with
probability `p_dist` if the computed distance metric value of the nodes
is at most `radius`, otherwise they are not joined.
Edges within `radius` of each other are determined using a KDTree when
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
to :math:`O(n)`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
p : float, optional
Which Minkowski distance metric to use.
`p` has to meet the condition ``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
p_dist : function, optional
A probability density function computing the probability of
connecting two nodes that are of distance, dist, computed by the
Minkowski distance metric. The probability density function, `p_dist`,
must be any function that takes the metric value as input
and outputs a single probability value between 0-1. The scipy.stats
package has many probability distribution functions implemented and
tools for custom probability distribution definitions [2], and passing
the .pdf method of scipy.stats distributions can be used here. If the
probability function, `p_dist`, is not supplied, the default function
is an exponential distribution with rate parameter :math:`\lambda=1`.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
pos_name : string, default="pos"
The name of the node attribute which represents the position
in 2D coordinates of the node in the returned graph.
Returns
-------
Graph
A soft random geometric graph, undirected and without self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function.
Examples
--------
Default Graph:
G = nx.soft_random_geometric_graph(50, 0.2)
Custom Graph:
Create a soft random geometric graph on 100 uniformly distributed nodes
where nodes are joined by an edge with probability computed from an
exponential distribution with rate parameter :math:`\lambda=1` if their
Euclidean distance is at most 0.2.
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2
The scipy.stats package can be used to define the probability distribution
with the .pdf method used as `p_dist`.
::
>>> import random
>>> import math
>>> n = 100
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> p_dist = lambda dist: math.exp(-dist)
>>> G = nx.soft_random_geometric_graph(n, 0.2, pos=pos, p_dist=p_dist)
References
----------
.. [1] Penrose, Mathew D. "Connectivity of soft random geometric graphs."
The Annals of Applied Probability 26.2 (2016): 986-1028.
.. [2] scipy.stats -
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
"""
G = nx.empty_graph(n)
G.name = f"soft_random_geometric_graph({n}, {radius}, {dim})"
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in G}
nx.set_node_attributes(G, pos, pos_name)
# if p_dist function not supplied the default function is an exponential
# distribution with rate parameter :math:`\lambda=1`.
if p_dist is None:
def p_dist(dist):
return math.exp(-dist)
def should_join(edge):
u, v = edge
dist = (sum(abs(a - b) ** p for a, b in zip(pos[u], pos[v]))) ** (1 / p)
return seed.random() < p_dist(dist)
G.add_edges_from(filter(should_join, _geometric_edges(G, radius, p, pos_name)))
return G
@py_random_state(7)
@nx._dispatch(graphs=None)
def geographical_threshold_graph(
n,
theta,
dim=2,
pos=None,
weight=None,
metric=None,
p_dist=None,
seed=None,
*,
pos_name="pos",
weight_name="weight",
):
r"""Returns a geographical threshold graph.
The geographical threshold graph model places $n$ nodes uniformly at
random in a rectangular domain. Each node $u$ is assigned a weight
$w_u$. Two nodes $u$ and $v$ are joined by an edge if
.. math::
(w_u + w_v)p_{dist}(r) \ge \theta
where `r` is the distance between `u` and `v`, `p_dist` is any function of
`r`, and :math:`\theta` as the threshold parameter. `p_dist` is used to
give weight to the distance between nodes when deciding whether or not
they should be connected. The larger `p_dist` is, the more prone nodes
separated by `r` are to be connected, and vice versa.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
theta: float
Threshold value
dim : int, optional
Dimension of graph
pos : dict
Node positions as a dictionary of tuples keyed by node.
weight : dict
Node weights as a dictionary of numbers keyed by node.
metric : function
A metric on vectors of numbers (represented as lists or
tuples). This must be a function that accepts two lists (or
tuples) as input and yields a number as output. The function
must also satisfy the four requirements of a `metric`_.
Specifically, if $d$ is the function and $x$, $y$,
and $z$ are vectors in the graph, then $d$ must satisfy
1. $d(x, y) \ge 0$,
2. $d(x, y) = 0$ if and only if $x = y$,
3. $d(x, y) = d(y, x)$,
4. $d(x, z) \le d(x, y) + d(y, z)$.
If this argument is not specified, the Euclidean distance metric is
used.
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
p_dist : function, optional
Any function used to give weight to the distance between nodes when
deciding whether or not they should be connected. `p_dist` was
originally conceived as a probability density function giving the
probability of connecting two nodes that are of metric distance `r`
apart. The implementation here allows for more arbitrary definitions
of `p_dist` that do not need to correspond to valid probability
density functions. The :mod:`scipy.stats` package has many
probability density functions implemented and tools for custom
probability density definitions, and passing the ``.pdf`` method of
scipy.stats distributions can be used here. If ``p_dist=None``
(the default), the exponential function :math:`r^{-2}` is used.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
pos_name : string, default="pos"
The name of the node attribute which represents the position
in 2D coordinates of the node in the returned graph.
weight_name : string, default="weight"
The name of the node attribute which represents the weight
of the node in the returned graph.
Returns
-------
Graph
A random geographic threshold graph, undirected and without
self-loops.
Each node has a node attribute ``pos`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function. Similarly, each node has a node
attribute ``weight`` that stores the weight of that node as
provided or as generated.
Examples
--------
Specify an alternate distance metric using the ``metric`` keyword
argument. For example, to use the `taxicab metric`_ instead of the
default `Euclidean metric`_::
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
>>> G = nx.geographical_threshold_graph(10, 0.1, metric=dist)
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
Notes
-----
If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter $\lambda=1$.
To specify weights from a different distribution, use the `weight` keyword
argument::
>>> import random
>>> n = 20
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.geographical_threshold_graph(20, 50, weight=w)
If node positions are not specified they are randomly assigned from the
uniform distribution.
References
----------
.. [1] Masuda, N., Miwa, H., Konno, N.:
Geographical threshold graphs with small-world and scale-free
properties.
Physical Review E 71, 036108 (2005)
.. [2] Milan Bradonjić, Aric Hagberg and Allon G. Percus,
Giant component and connectivity in geographical threshold graphs,
in Algorithms and Models for the Web-Graph (WAW 2007),
Antony Bonato and Fan Chung (Eds), pp. 209--216, 2007
"""
G = nx.empty_graph(n)
# If no weights are provided, choose them from an exponential
# distribution.
if weight is None:
weight = {v: seed.expovariate(1) for v in G}
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in G}
# If no distance metric is provided, use Euclidean distance.
if metric is None:
metric = math.dist
nx.set_node_attributes(G, weight, weight_name)
nx.set_node_attributes(G, pos, pos_name)
# if p_dist is not supplied, use default r^-2
if p_dist is None:
def p_dist(r):
return r**-2
# Returns ``True`` if and only if the nodes whose attributes are
# ``du`` and ``dv`` should be joined, according to the threshold
# condition.
def should_join(pair):
u, v = pair
u_pos, v_pos = pos[u], pos[v]
u_weight, v_weight = weight[u], weight[v]
return (u_weight + v_weight) * p_dist(metric(u_pos, v_pos)) >= theta
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G
@py_random_state(6)
@nx._dispatch(graphs=None)
def waxman_graph(
n,
beta=0.4,
alpha=0.1,
L=None,
domain=(0, 0, 1, 1),
metric=None,
seed=None,
*,
pos_name="pos",
):
r"""Returns a Waxman random graph.
The Waxman random graph model places `n` nodes uniformly at random
in a rectangular domain. Each pair of nodes at distance `d` is
joined by an edge with probability
.. math::
p = \beta \exp(-d / \alpha L).
This function implements both Waxman models, using the `L` keyword
argument.
* Waxman-1: if `L` is not specified, it is set to be the maximum distance
between any pair of nodes.
* Waxman-2: if `L` is specified, the distance between a pair of nodes is
chosen uniformly at random from the interval `[0, L]`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
beta: float
Model parameter
alpha: float
Model parameter
L : float, optional
Maximum distance between nodes. If not specified, the actual distance
is calculated.
domain : four-tuple of numbers, optional
Domain size, given as a tuple of the form `(x_min, y_min, x_max,
y_max)`.
metric : function
A metric on vectors of numbers (represented as lists or
tuples). This must be a function that accepts two lists (or
tuples) as input and yields a number as output. The function
must also satisfy the four requirements of a `metric`_.
Specifically, if $d$ is the function and $x$, $y$,
and $z$ are vectors in the graph, then $d$ must satisfy
1. $d(x, y) \ge 0$,
2. $d(x, y) = 0$ if and only if $x = y$,
3. $d(x, y) = d(y, x)$,
4. $d(x, z) \le d(x, y) + d(y, z)$.
If this argument is not specified, the Euclidean distance metric is
used.
.. _metric: https://en.wikipedia.org/wiki/Metric_%28mathematics%29
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
pos_name : string, default="pos"
The name of the node attribute which represents the position
in 2D coordinates of the node in the returned graph.
Returns
-------
Graph
A random Waxman graph, undirected and without self-loops. Each
node has a node attribute ``'pos'`` that stores the position of
that node in Euclidean space as generated by this function.
Examples
--------
Specify an alternate distance metric using the ``metric`` keyword
argument. For example, to use the "`taxicab metric`_" instead of the
default `Euclidean metric`_::
>>> dist = lambda x, y: sum(abs(a - b) for a, b in zip(x, y))
>>> G = nx.waxman_graph(10, 0.5, 0.1, metric=dist)
.. _taxicab metric: https://en.wikipedia.org/wiki/Taxicab_geometry
.. _Euclidean metric: https://en.wikipedia.org/wiki/Euclidean_distance
Notes
-----
Starting in NetworkX 2.0 the parameters alpha and beta align with their
usual roles in the probability distribution. In earlier versions their
positions in the expression were reversed. Their position in the calling
sequence reversed as well to minimize backward incompatibility.
References
----------
.. [1] B. M. Waxman, *Routing of multipoint connections*.
IEEE J. Select. Areas Commun. 6(9),(1988) 1617--1622.
"""
G = nx.empty_graph(n)
(xmin, ymin, xmax, ymax) = domain
# Each node gets a uniformly random position in the given rectangle.
pos = {v: (seed.uniform(xmin, xmax), seed.uniform(ymin, ymax)) for v in G}
nx.set_node_attributes(G, pos, pos_name)
# If no distance metric is provided, use Euclidean distance.
if metric is None:
metric = math.dist
# If the maximum distance L is not specified (that is, we are in the
# Waxman-1 model), then find the maximum distance between any pair
# of nodes.
#
# In the Waxman-1 model, join nodes randomly based on distance. In
# the Waxman-2 model, join randomly based on random l.
if L is None:
L = max(metric(x, y) for x, y in combinations(pos.values(), 2))
def dist(u, v):
return metric(pos[u], pos[v])
else:
def dist(u, v):
return seed.random() * L
# `pair` is the pair of nodes to decide whether to join.
def should_join(pair):
return seed.random() < beta * math.exp(-dist(*pair) / (alpha * L))
G.add_edges_from(filter(should_join, combinations(G, 2)))
return G
@py_random_state(5)
@nx._dispatch(graphs=None)
def navigable_small_world_graph(n, p=1, q=1, r=2, dim=2, seed=None):
r"""Returns a navigable small-world graph.
A navigable small-world graph is a directed grid with additional long-range
connections that are chosen randomly.
[...] we begin with a set of nodes [...] that are identified with the set
of lattice points in an $n \times n$ square,
$\{(i, j): i \in \{1, 2, \ldots, n\}, j \in \{1, 2, \ldots, n\}\}$,
and we define the *lattice distance* between two nodes $(i, j)$ and
$(k, l)$ to be the number of "lattice steps" separating them:
$d((i, j), (k, l)) = |k - i| + |l - j|$.
For a universal constant $p >= 1$, the node $u$ has a directed edge to
every other node within lattice distance $p$---these are its *local
contacts*. For universal constants $q >= 0$ and $r >= 0$ we also
construct directed edges from $u$ to $q$ other nodes (the *long-range
contacts*) using independent random trials; the $i$th directed edge from
$u$ has endpoint $v$ with probability proportional to $[d(u,v)]^{-r}$.
-- [1]_
Parameters
----------
n : int
The length of one side of the lattice; the number of nodes in
the graph is therefore $n^2$.
p : int
The diameter of short range connections. Each node is joined with every
other node within this lattice distance.
q : int
The number of long-range connections for each node.
r : float
Exponent for decaying probability of connections. The probability of
connecting to a node at lattice distance $d$ is $1/d^r$.
dim : int
Dimension of grid
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
References
----------
.. [1] J. Kleinberg. The small-world phenomenon: An algorithmic
perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
"""
if p < 1:
raise nx.NetworkXException("p must be >= 1")
if q < 0:
raise nx.NetworkXException("q must be >= 0")
if r < 0:
raise nx.NetworkXException("r must be >= 1")
G = nx.DiGraph()
nodes = list(product(range(n), repeat=dim))
for p1 in nodes:
probs = [0]
for p2 in nodes:
if p1 == p2:
continue
d = sum((abs(b - a) for a, b in zip(p1, p2)))
if d <= p:
G.add_edge(p1, p2)
probs.append(d**-r)
cdf = list(accumulate(probs))
for _ in range(q):
target = nodes[bisect_left(cdf, seed.uniform(0, cdf[-1]))]
G.add_edge(p1, target)
return G
@py_random_state(7)
@nx._dispatch(graphs=None)
def thresholded_random_geometric_graph(
n,
radius,
theta,
dim=2,
pos=None,
weight=None,
p=2,
seed=None,
*,
pos_name="pos",
weight_name="weight",
):
r"""Returns a thresholded random geometric graph in the unit cube.
The thresholded random geometric graph [1] model places `n` nodes
uniformly at random in the unit cube of dimensions `dim`. Each node
`u` is assigned a weight :math:`w_u`. Two nodes `u` and `v` are
joined by an edge if they are within the maximum connection distance,
`radius` computed by the `p`-Minkowski distance and the summation of
weights :math:`w_u` + :math:`w_v` is greater than or equal
to the threshold parameter `theta`.
Edges within `radius` of each other are determined using a KDTree when
SciPy is available. This reduces the time complexity from :math:`O(n^2)`
to :math:`O(n)`.
Parameters
----------
n : int or iterable
Number of nodes or iterable of nodes
radius: float
Distance threshold value
theta: float
Threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.
weight : dict, optional
Node weights as a dictionary of numbers keyed by node.
p : float, optional (default 2)
Which Minkowski distance metric to use. `p` has to meet the condition
``1 <= p <= infinity``.
If this argument is not specified, the :math:`L^2` metric
(the Euclidean distance metric), p = 2 is used.
This should not be confused with the `p` of an Erdős-Rényi random
graph, which represents probability.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
pos_name : string, default="pos"
The name of the node attribute which represents the position
in 2D coordinates of the node in the returned graph.
weight_name : string, default="weight"
The name of the node attribute which represents the weight
of the node in the returned graph.
Returns
-------
Graph
A thresholded random geographic graph, undirected and without
self-loops.
Each node has a node attribute ``'pos'`` that stores the
position of that node in Euclidean space as provided by the
``pos`` keyword argument or, if ``pos`` was not provided, as
generated by this function. Similarly, each node has a nodethre
attribute ``'weight'`` that stores the weight of that node as
provided or as generated.
Examples
--------
Default Graph:
G = nx.thresholded_random_geometric_graph(50, 0.2, 0.1)
Custom Graph:
Create a thresholded random geometric graph on 50 uniformly distributed
nodes where nodes are joined by an edge if their sum weights drawn from
a exponential distribution with rate = 5 are >= theta = 0.1 and their
Euclidean distance is at most 0.2.
Notes
-----
This uses a *k*-d tree to build the graph.
The `pos` keyword argument can be used to specify node positions so you
can create an arbitrary distribution and domain for positions.
For example, to use a 2D Gaussian distribution of node positions with mean
(0, 0) and standard deviation 2
If weights are not specified they are assigned to nodes by drawing randomly
from the exponential distribution with rate parameter :math:`\lambda=1`.
To specify weights from a different distribution, use the `weight` keyword
argument::
::
>>> import random
>>> import math
>>> n = 50
>>> pos = {i: (random.gauss(0, 2), random.gauss(0, 2)) for i in range(n)}
>>> w = {i: random.expovariate(5.0) for i in range(n)}
>>> G = nx.thresholded_random_geometric_graph(n, 0.2, 0.1, 2, pos, w)
References
----------
.. [1] http://cole-maclean.github.io/blog/files/thesis.pdf
"""
G = nx.empty_graph(n)
G.name = f"thresholded_random_geometric_graph({n}, {radius}, {theta}, {dim})"
# If no weights are provided, choose them from an exponential
# distribution.
if weight is None:
weight = {v: seed.expovariate(1) for v in G}
# If no positions are provided, choose uniformly random vectors in
# Euclidean space of the specified dimension.
if pos is None:
pos = {v: [seed.random() for i in range(dim)] for v in G}
# If no distance metric is provided, use Euclidean distance.
nx.set_node_attributes(G, weight, weight_name)
nx.set_node_attributes(G, pos, pos_name)
edges = (
(u, v)
for u, v in _geometric_edges(G, radius, p, pos_name)
if weight[u] + weight[v] >= theta
)
G.add_edges_from(edges)
return G
|