Spaces:
Running
Running
"""Tests of interaction of matrix with other parts of numpy. | |
Note that tests with MaskedArray and linalg are done in separate files. | |
""" | |
import pytest | |
import textwrap | |
import warnings | |
import numpy as np | |
from numpy.testing import (assert_, assert_equal, assert_raises, | |
assert_raises_regex, assert_array_equal, | |
assert_almost_equal, assert_array_almost_equal) | |
def test_fancy_indexing(): | |
# The matrix class messes with the shape. While this is always | |
# weird (getitem is not used, it does not have setitem nor knows | |
# about fancy indexing), this tests gh-3110 | |
# 2018-04-29: moved here from core.tests.test_index. | |
m = np.matrix([[1, 2], [3, 4]]) | |
assert_(isinstance(m[[0, 1, 0], :], np.matrix)) | |
# gh-3110. Note the transpose currently because matrices do *not* | |
# support dimension fixing for fancy indexing correctly. | |
x = np.asmatrix(np.arange(50).reshape(5, 10)) | |
assert_equal(x[:2, np.array(-1)], x[:2, -1].T) | |
def test_polynomial_mapdomain(): | |
# test that polynomial preserved matrix subtype. | |
# 2018-04-29: moved here from polynomial.tests.polyutils. | |
dom1 = [0, 4] | |
dom2 = [1, 3] | |
x = np.matrix([dom1, dom1]) | |
res = np.polynomial.polyutils.mapdomain(x, dom1, dom2) | |
assert_(isinstance(res, np.matrix)) | |
def test_sort_matrix_none(): | |
# 2018-04-29: moved here from core.tests.test_multiarray | |
a = np.matrix([[2, 1, 0]]) | |
actual = np.sort(a, axis=None) | |
expected = np.matrix([[0, 1, 2]]) | |
assert_equal(actual, expected) | |
assert_(type(expected) is np.matrix) | |
def test_partition_matrix_none(): | |
# gh-4301 | |
# 2018-04-29: moved here from core.tests.test_multiarray | |
a = np.matrix([[2, 1, 0]]) | |
actual = np.partition(a, 1, axis=None) | |
expected = np.matrix([[0, 1, 2]]) | |
assert_equal(actual, expected) | |
assert_(type(expected) is np.matrix) | |
def test_dot_scalar_and_matrix_of_objects(): | |
# Ticket #2469 | |
# 2018-04-29: moved here from core.tests.test_multiarray | |
arr = np.matrix([1, 2], dtype=object) | |
desired = np.matrix([[3, 6]], dtype=object) | |
assert_equal(np.dot(arr, 3), desired) | |
assert_equal(np.dot(3, arr), desired) | |
def test_inner_scalar_and_matrix(): | |
# 2018-04-29: moved here from core.tests.test_multiarray | |
for dt in np.typecodes['AllInteger'] + np.typecodes['AllFloat'] + '?': | |
sca = np.array(3, dtype=dt)[()] | |
arr = np.matrix([[1, 2], [3, 4]], dtype=dt) | |
desired = np.matrix([[3, 6], [9, 12]], dtype=dt) | |
assert_equal(np.inner(arr, sca), desired) | |
assert_equal(np.inner(sca, arr), desired) | |
def test_inner_scalar_and_matrix_of_objects(): | |
# Ticket #4482 | |
# 2018-04-29: moved here from core.tests.test_multiarray | |
arr = np.matrix([1, 2], dtype=object) | |
desired = np.matrix([[3, 6]], dtype=object) | |
assert_equal(np.inner(arr, 3), desired) | |
assert_equal(np.inner(3, arr), desired) | |
def test_iter_allocate_output_subtype(): | |
# Make sure that the subtype with priority wins | |
# 2018-04-29: moved here from core.tests.test_nditer, given the | |
# matrix specific shape test. | |
# matrix vs ndarray | |
a = np.matrix([[1, 2], [3, 4]]) | |
b = np.arange(4).reshape(2, 2).T | |
i = np.nditer([a, b, None], [], | |
[['readonly'], ['readonly'], ['writeonly', 'allocate']]) | |
assert_(type(i.operands[2]) is np.matrix) | |
assert_(type(i.operands[2]) is not np.ndarray) | |
assert_equal(i.operands[2].shape, (2, 2)) | |
# matrix always wants things to be 2D | |
b = np.arange(4).reshape(1, 2, 2) | |
assert_raises(RuntimeError, np.nditer, [a, b, None], [], | |
[['readonly'], ['readonly'], ['writeonly', 'allocate']]) | |
# but if subtypes are disabled, the result can still work | |
i = np.nditer([a, b, None], [], | |
[['readonly'], ['readonly'], | |
['writeonly', 'allocate', 'no_subtype']]) | |
assert_(type(i.operands[2]) is np.ndarray) | |
assert_(type(i.operands[2]) is not np.matrix) | |
assert_equal(i.operands[2].shape, (1, 2, 2)) | |
def like_function(): | |
# 2018-04-29: moved here from core.tests.test_numeric | |
a = np.matrix([[1, 2], [3, 4]]) | |
for like_function in np.zeros_like, np.ones_like, np.empty_like: | |
b = like_function(a) | |
assert_(type(b) is np.matrix) | |
c = like_function(a, subok=False) | |
assert_(type(c) is not np.matrix) | |
def test_array_astype(): | |
# 2018-04-29: copied here from core.tests.test_api | |
# subok=True passes through a matrix | |
a = np.matrix([[0, 1, 2], [3, 4, 5]], dtype='f4') | |
b = a.astype('f4', subok=True, copy=False) | |
assert_(a is b) | |
# subok=True is default, and creates a subtype on a cast | |
b = a.astype('i4', copy=False) | |
assert_equal(a, b) | |
assert_equal(type(b), np.matrix) | |
# subok=False never returns a matrix | |
b = a.astype('f4', subok=False, copy=False) | |
assert_equal(a, b) | |
assert_(not (a is b)) | |
assert_(type(b) is not np.matrix) | |
def test_stack(): | |
# 2018-04-29: copied here from core.tests.test_shape_base | |
# check np.matrix cannot be stacked | |
m = np.matrix([[1, 2], [3, 4]]) | |
assert_raises_regex(ValueError, 'shape too large to be a matrix', | |
np.stack, [m, m]) | |
def test_object_scalar_multiply(): | |
# Tickets #2469 and #4482 | |
# 2018-04-29: moved here from core.tests.test_ufunc | |
arr = np.matrix([1, 2], dtype=object) | |
desired = np.matrix([[3, 6]], dtype=object) | |
assert_equal(np.multiply(arr, 3), desired) | |
assert_equal(np.multiply(3, arr), desired) | |
def test_nanfunctions_matrices(): | |
# Check that it works and that type and | |
# shape are preserved | |
# 2018-04-29: moved here from core.tests.test_nanfunctions | |
mat = np.matrix(np.eye(3)) | |
for f in [np.nanmin, np.nanmax]: | |
res = f(mat, axis=0) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (1, 3)) | |
res = f(mat, axis=1) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (3, 1)) | |
res = f(mat) | |
assert_(np.isscalar(res)) | |
# check that rows of nan are dealt with for subclasses (#4628) | |
mat[1] = np.nan | |
for f in [np.nanmin, np.nanmax]: | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mat, axis=0) | |
assert_(isinstance(res, np.matrix)) | |
assert_(not np.any(np.isnan(res))) | |
assert_(len(w) == 0) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mat, axis=1) | |
assert_(isinstance(res, np.matrix)) | |
assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) | |
and not np.isnan(res[2, 0])) | |
assert_(len(w) == 1, 'no warning raised') | |
assert_(issubclass(w[0].category, RuntimeWarning)) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.simplefilter('always') | |
res = f(mat) | |
assert_(np.isscalar(res)) | |
assert_(res != np.nan) | |
assert_(len(w) == 0) | |
def test_nanfunctions_matrices_general(): | |
# Check that it works and that type and | |
# shape are preserved | |
# 2018-04-29: moved here from core.tests.test_nanfunctions | |
mat = np.matrix(np.eye(3)) | |
for f in (np.nanargmin, np.nanargmax, np.nansum, np.nanprod, | |
np.nanmean, np.nanvar, np.nanstd): | |
res = f(mat, axis=0) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (1, 3)) | |
res = f(mat, axis=1) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (3, 1)) | |
res = f(mat) | |
assert_(np.isscalar(res)) | |
for f in np.nancumsum, np.nancumprod: | |
res = f(mat, axis=0) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (3, 3)) | |
res = f(mat, axis=1) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (3, 3)) | |
res = f(mat) | |
assert_(isinstance(res, np.matrix)) | |
assert_(res.shape == (1, 3*3)) | |
def test_average_matrix(): | |
# 2018-04-29: moved here from core.tests.test_function_base. | |
y = np.matrix(np.random.rand(5, 5)) | |
assert_array_equal(y.mean(0), np.average(y, 0)) | |
a = np.matrix([[1, 2], [3, 4]]) | |
w = np.matrix([[1, 2], [3, 4]]) | |
r = np.average(a, axis=0, weights=w) | |
assert_equal(type(r), np.matrix) | |
assert_equal(r, [[2.5, 10.0/3]]) | |
def test_trapz_matrix(): | |
# Test to make sure matrices give the same answer as ndarrays | |
# 2018-04-29: moved here from core.tests.test_function_base. | |
x = np.linspace(0, 5) | |
y = x * x | |
r = np.trapz(y, x) | |
mx = np.matrix(x) | |
my = np.matrix(y) | |
mr = np.trapz(my, mx) | |
assert_almost_equal(mr, r) | |
def test_ediff1d_matrix(): | |
# 2018-04-29: moved here from core.tests.test_arraysetops. | |
assert(isinstance(np.ediff1d(np.matrix(1)), np.matrix)) | |
assert(isinstance(np.ediff1d(np.matrix(1), to_begin=1), np.matrix)) | |
def test_apply_along_axis_matrix(): | |
# this test is particularly malicious because matrix | |
# refuses to become 1d | |
# 2018-04-29: moved here from core.tests.test_shape_base. | |
def double(row): | |
return row * 2 | |
m = np.matrix([[0, 1], [2, 3]]) | |
expected = np.matrix([[0, 2], [4, 6]]) | |
result = np.apply_along_axis(double, 0, m) | |
assert_(isinstance(result, np.matrix)) | |
assert_array_equal(result, expected) | |
result = np.apply_along_axis(double, 1, m) | |
assert_(isinstance(result, np.matrix)) | |
assert_array_equal(result, expected) | |
def test_kron_matrix(): | |
# 2018-04-29: moved here from core.tests.test_shape_base. | |
a = np.ones([2, 2]) | |
m = np.asmatrix(a) | |
assert_equal(type(np.kron(a, a)), np.ndarray) | |
assert_equal(type(np.kron(m, m)), np.matrix) | |
assert_equal(type(np.kron(a, m)), np.matrix) | |
assert_equal(type(np.kron(m, a)), np.matrix) | |
class TestConcatenatorMatrix: | |
# 2018-04-29: moved here from core.tests.test_index_tricks. | |
def test_matrix(self): | |
a = [1, 2] | |
b = [3, 4] | |
ab_r = np.r_['r', a, b] | |
ab_c = np.r_['c', a, b] | |
assert_equal(type(ab_r), np.matrix) | |
assert_equal(type(ab_c), np.matrix) | |
assert_equal(np.array(ab_r), [[1, 2, 3, 4]]) | |
assert_equal(np.array(ab_c), [[1], [2], [3], [4]]) | |
assert_raises(ValueError, lambda: np.r_['rc', a, b]) | |
def test_matrix_scalar(self): | |
r = np.r_['r', [1, 2], 3] | |
assert_equal(type(r), np.matrix) | |
assert_equal(np.array(r), [[1, 2, 3]]) | |
def test_matrix_builder(self): | |
a = np.array([1]) | |
b = np.array([2]) | |
c = np.array([3]) | |
d = np.array([4]) | |
actual = np.r_['a, b; c, d'] | |
expected = np.bmat([[a, b], [c, d]]) | |
assert_equal(actual, expected) | |
assert_equal(type(actual), type(expected)) | |
def test_array_equal_error_message_matrix(): | |
# 2018-04-29: moved here from testing.tests.test_utils. | |
with pytest.raises(AssertionError) as exc_info: | |
assert_equal(np.array([1, 2]), np.matrix([1, 2])) | |
msg = str(exc_info.value) | |
msg_reference = textwrap.dedent("""\ | |
Arrays are not equal | |
(shapes (2,), (1, 2) mismatch) | |
x: array([1, 2]) | |
y: matrix([[1, 2]])""") | |
assert_equal(msg, msg_reference) | |
def test_array_almost_equal_matrix(): | |
# Matrix slicing keeps things 2-D, while array does not necessarily. | |
# See gh-8452. | |
# 2018-04-29: moved here from testing.tests.test_utils. | |
m1 = np.matrix([[1., 2.]]) | |
m2 = np.matrix([[1., np.nan]]) | |
m3 = np.matrix([[1., -np.inf]]) | |
m4 = np.matrix([[np.nan, np.inf]]) | |
m5 = np.matrix([[1., 2.], [np.nan, np.inf]]) | |
for assert_func in assert_array_almost_equal, assert_almost_equal: | |
for m in m1, m2, m3, m4, m5: | |
assert_func(m, m) | |
a = np.array(m) | |
assert_func(a, m) | |
assert_func(m, a) | |