Spaces:
Running
Running
import numpy as np | |
from gym import utils | |
from gym.envs.mujoco import MuJocoPyEnv | |
from gym.spaces import Box | |
class HopperEnv(MuJocoPyEnv, utils.EzPickle): | |
metadata = { | |
"render_modes": [ | |
"human", | |
"rgb_array", | |
"depth_array", | |
], | |
"render_fps": 125, | |
} | |
def __init__(self, **kwargs): | |
observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64) | |
MuJocoPyEnv.__init__( | |
self, "hopper.xml", 4, observation_space=observation_space, **kwargs | |
) | |
utils.EzPickle.__init__(self, **kwargs) | |
def step(self, a): | |
posbefore = self.sim.data.qpos[0] | |
self.do_simulation(a, self.frame_skip) | |
posafter, height, ang = self.sim.data.qpos[0:3] | |
alive_bonus = 1.0 | |
reward = (posafter - posbefore) / self.dt | |
reward += alive_bonus | |
reward -= 1e-3 * np.square(a).sum() | |
s = self.state_vector() | |
terminated = not ( | |
np.isfinite(s).all() | |
and (np.abs(s[2:]) < 100).all() | |
and (height > 0.7) | |
and (abs(ang) < 0.2) | |
) | |
ob = self._get_obs() | |
if self.render_mode == "human": | |
self.render() | |
return ob, reward, terminated, False, {} | |
def _get_obs(self): | |
return np.concatenate( | |
[self.sim.data.qpos.flat[1:], np.clip(self.sim.data.qvel.flat, -10, 10)] | |
) | |
def reset_model(self): | |
qpos = self.init_qpos + self.np_random.uniform( | |
low=-0.005, high=0.005, size=self.model.nq | |
) | |
qvel = self.init_qvel + self.np_random.uniform( | |
low=-0.005, high=0.005, size=self.model.nv | |
) | |
self.set_state(qpos, qvel) | |
return self._get_obs() | |
def viewer_setup(self): | |
assert self.viewer is not None | |
self.viewer.cam.trackbodyid = 2 | |
self.viewer.cam.distance = self.model.stat.extent * 0.75 | |
self.viewer.cam.lookat[2] = 1.15 | |
self.viewer.cam.elevation = -20 | |