Kano001's picture
Upload 919 files
375a1cf verified
raw
history blame
2.03 kB
import numpy as np
from gym import utils
from gym.envs.mujoco import MuJocoPyEnv
from gym.spaces import Box
class HopperEnv(MuJocoPyEnv, utils.EzPickle):
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 125,
}
def __init__(self, **kwargs):
observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64)
MuJocoPyEnv.__init__(
self, "hopper.xml", 4, observation_space=observation_space, **kwargs
)
utils.EzPickle.__init__(self, **kwargs)
def step(self, a):
posbefore = self.sim.data.qpos[0]
self.do_simulation(a, self.frame_skip)
posafter, height, ang = self.sim.data.qpos[0:3]
alive_bonus = 1.0
reward = (posafter - posbefore) / self.dt
reward += alive_bonus
reward -= 1e-3 * np.square(a).sum()
s = self.state_vector()
terminated = not (
np.isfinite(s).all()
and (np.abs(s[2:]) < 100).all()
and (height > 0.7)
and (abs(ang) < 0.2)
)
ob = self._get_obs()
if self.render_mode == "human":
self.render()
return ob, reward, terminated, False, {}
def _get_obs(self):
return np.concatenate(
[self.sim.data.qpos.flat[1:], np.clip(self.sim.data.qvel.flat, -10, 10)]
)
def reset_model(self):
qpos = self.init_qpos + self.np_random.uniform(
low=-0.005, high=0.005, size=self.model.nq
)
qvel = self.init_qvel + self.np_random.uniform(
low=-0.005, high=0.005, size=self.model.nv
)
self.set_state(qpos, qvel)
return self._get_obs()
def viewer_setup(self):
assert self.viewer is not None
self.viewer.cam.trackbodyid = 2
self.viewer.cam.distance = self.model.stat.extent * 0.75
self.viewer.cam.lookat[2] = 1.15
self.viewer.cam.elevation = -20