Spaces:
Running
Running
from typing import Dict, Optional, Tuple, List | |
from mlagents.torch_utils import torch | |
import numpy as np | |
from collections import defaultdict | |
from mlagents.trainers.buffer import AgentBuffer, AgentBufferField | |
from mlagents.trainers.trajectory import ObsUtil | |
from mlagents.trainers.torch_entities.components.bc.module import BCModule | |
from mlagents.trainers.torch_entities.components.reward_providers import ( | |
create_reward_provider, | |
) | |
from mlagents.trainers.policy.torch_policy import TorchPolicy | |
from mlagents.trainers.optimizer import Optimizer | |
from mlagents.trainers.settings import ( | |
TrainerSettings, | |
RewardSignalSettings, | |
RewardSignalType, | |
) | |
from mlagents.trainers.torch_entities.utils import ModelUtils | |
class TorchOptimizer(Optimizer): | |
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings): | |
super().__init__() | |
self.policy = policy | |
self.trainer_settings = trainer_settings | |
self.update_dict: Dict[str, torch.Tensor] = {} | |
self.value_heads: Dict[str, torch.Tensor] = {} | |
self.memory_in: torch.Tensor = None | |
self.memory_out: torch.Tensor = None | |
self.m_size: int = 0 | |
self.global_step = torch.tensor(0) | |
self.bc_module: Optional[BCModule] = None | |
self.create_reward_signals(trainer_settings.reward_signals) | |
self.critic_memory_dict: Dict[str, torch.Tensor] = {} | |
if trainer_settings.behavioral_cloning is not None: | |
self.bc_module = BCModule( | |
self.policy, | |
trainer_settings.behavioral_cloning, | |
policy_learning_rate=trainer_settings.hyperparameters.learning_rate, | |
default_batch_size=trainer_settings.hyperparameters.batch_size, | |
default_num_epoch=3, | |
) | |
def critic(self): | |
raise NotImplementedError | |
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: | |
pass | |
def create_reward_signals( | |
self, reward_signal_configs: Dict[RewardSignalType, RewardSignalSettings] | |
) -> None: | |
""" | |
Create reward signals | |
:param reward_signal_configs: Reward signal config. | |
""" | |
for reward_signal, settings in reward_signal_configs.items(): | |
# Name reward signals by string in case we have duplicates later | |
self.reward_signals[reward_signal.value] = create_reward_provider( | |
reward_signal, self.policy.behavior_spec, settings | |
) | |
def _evaluate_by_sequence( | |
self, tensor_obs: List[torch.Tensor], initial_memory: torch.Tensor | |
) -> Tuple[Dict[str, torch.Tensor], AgentBufferField, torch.Tensor]: | |
""" | |
Evaluate a trajectory sequence-by-sequence, assembling the result. This enables us to get the | |
intermediate memories for the critic. | |
:param tensor_obs: A List of tensors of shape (trajectory_len, <obs_dim>) that are the agent's | |
observations for this trajectory. | |
:param initial_memory: The memory that preceeds this trajectory. Of shape (1,1,<mem_size>), i.e. | |
what is returned as the output of a MemoryModules. | |
:return: A Tuple of the value estimates as a Dict of [name, tensor], an AgentBufferField of the initial | |
memories to be used during value function update, and the final memory at the end of the trajectory. | |
""" | |
num_experiences = tensor_obs[0].shape[0] | |
all_next_memories = AgentBufferField() | |
# When using LSTM, we need to divide the trajectory into sequences of equal length. Sometimes, | |
# that division isn't even, and we must pad the leftover sequence. | |
# When it is added to the buffer, the last sequence will be padded. So if seq_len = 3 and | |
# trajectory is of length 10, the last sequence is [obs,pad,pad] once it is added to the buffer. | |
# Compute the number of elements in this sequence that will end up being padded. | |
leftover_seq_len = num_experiences % self.policy.sequence_length | |
all_values: Dict[str, List[np.ndarray]] = defaultdict(list) | |
_mem = initial_memory | |
# Evaluate other trajectories, carrying over _mem after each | |
# trajectory | |
for seq_num in range(num_experiences // self.policy.sequence_length): | |
seq_obs = [] | |
for _ in range(self.policy.sequence_length): | |
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze())) | |
start = seq_num * self.policy.sequence_length | |
end = (seq_num + 1) * self.policy.sequence_length | |
for _obs in tensor_obs: | |
seq_obs.append(_obs[start:end]) | |
values, _mem = self.critic.critic_pass( | |
seq_obs, _mem, sequence_length=self.policy.sequence_length | |
) | |
for signal_name, _val in values.items(): | |
all_values[signal_name].append(_val) | |
# Compute values for the potentially truncated last sequence. Note that this | |
# sequence isn't padded yet, but will be. | |
seq_obs = [] | |
if leftover_seq_len > 0: | |
for _obs in tensor_obs: | |
last_seq_obs = _obs[-leftover_seq_len:] | |
seq_obs.append(last_seq_obs) | |
# For the last sequence, the initial memory should be the one at the | |
# end of this trajectory. | |
for _ in range(leftover_seq_len): | |
all_next_memories.append(ModelUtils.to_numpy(_mem.squeeze())) | |
last_values, _mem = self.critic.critic_pass( | |
seq_obs, _mem, sequence_length=leftover_seq_len | |
) | |
for signal_name, _val in last_values.items(): | |
all_values[signal_name].append(_val) | |
# Create one tensor per reward signal | |
all_value_tensors = { | |
signal_name: torch.cat(value_list, dim=0) | |
for signal_name, value_list in all_values.items() | |
} | |
next_mem = _mem | |
return all_value_tensors, all_next_memories, next_mem | |
def update_reward_signals(self, batch: AgentBuffer) -> Dict[str, float]: | |
update_stats: Dict[str, float] = {} | |
for reward_provider in self.reward_signals.values(): | |
update_stats.update(reward_provider.update(batch)) | |
return update_stats | |
def get_trajectory_value_estimates( | |
self, | |
batch: AgentBuffer, | |
next_obs: List[np.ndarray], | |
done: bool, | |
agent_id: str = "", | |
) -> Tuple[Dict[str, np.ndarray], Dict[str, float], Optional[AgentBufferField]]: | |
""" | |
Get value estimates and memories for a trajectory, in batch form. | |
:param batch: An AgentBuffer that consists of a trajectory. | |
:param next_obs: the next observation (after the trajectory). Used for boostrapping | |
if this is not a termiinal trajectory. | |
:param done: Set true if this is a terminal trajectory. | |
:param agent_id: Agent ID of the agent that this trajectory belongs to. | |
:returns: A Tuple of the Value Estimates as a Dict of [name, np.ndarray(trajectory_len)], | |
the final value estimate as a Dict of [name, float], and optionally (if using memories) | |
an AgentBufferField of initial critic memories to be used during update. | |
""" | |
n_obs = len(self.policy.behavior_spec.observation_specs) | |
if agent_id in self.critic_memory_dict: | |
memory = self.critic_memory_dict[agent_id] | |
else: | |
memory = ( | |
torch.zeros((1, 1, self.critic.memory_size)) | |
if self.policy.use_recurrent | |
else None | |
) | |
# Convert to tensors | |
current_obs = [ | |
ModelUtils.list_to_tensor(obs) for obs in ObsUtil.from_buffer(batch, n_obs) | |
] | |
next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs] | |
next_obs = [obs.unsqueeze(0) for obs in next_obs] | |
# If we're using LSTM, we want to get all the intermediate memories. | |
all_next_memories: Optional[AgentBufferField] = None | |
# To prevent memory leak and improve performance, evaluate with no_grad. | |
with torch.no_grad(): | |
if self.policy.use_recurrent: | |
( | |
value_estimates, | |
all_next_memories, | |
next_memory, | |
) = self._evaluate_by_sequence(current_obs, memory) | |
else: | |
value_estimates, next_memory = self.critic.critic_pass( | |
current_obs, memory, sequence_length=batch.num_experiences | |
) | |
# Store the memory for the next trajectory. This should NOT have a gradient. | |
self.critic_memory_dict[agent_id] = next_memory | |
next_value_estimate, _ = self.critic.critic_pass( | |
next_obs, next_memory, sequence_length=1 | |
) | |
for name, estimate in value_estimates.items(): | |
value_estimates[name] = ModelUtils.to_numpy(estimate) | |
next_value_estimate[name] = ModelUtils.to_numpy(next_value_estimate[name]) | |
if done: | |
for k in next_value_estimate: | |
if not self.reward_signals[k].ignore_done: | |
next_value_estimate[k] = 0.0 | |
if agent_id in self.critic_memory_dict: | |
self.critic_memory_dict.pop(agent_id) | |
return value_estimates, next_value_estimate, all_next_memories | |