Kano001's picture
Upload 280 files
e11e4fe verified
raw
history blame
18.7 kB
from typing import List, Optional, Tuple, Dict
from mlagents.torch_utils import torch, nn
from mlagents.trainers.torch_entities.layers import LinearEncoder, Initialization
import numpy as np
from mlagents.trainers.torch_entities.encoders import (
SimpleVisualEncoder,
ResNetVisualEncoder,
NatureVisualEncoder,
SmallVisualEncoder,
FullyConnectedVisualEncoder,
VectorInput,
)
from mlagents.trainers.settings import EncoderType, ScheduleType
from mlagents.trainers.torch_entities.attention import (
EntityEmbedding,
ResidualSelfAttention,
)
from mlagents.trainers.exception import UnityTrainerException
from mlagents_envs.base_env import ObservationSpec, DimensionProperty
class ModelUtils:
# Minimum supported side for each encoder type. If refactoring an encoder, please
# adjust these also.
MIN_RESOLUTION_FOR_ENCODER = {
EncoderType.FULLY_CONNECTED: 1,
EncoderType.MATCH3: 5,
EncoderType.SIMPLE: 20,
EncoderType.NATURE_CNN: 36,
EncoderType.RESNET: 15,
}
VALID_VISUAL_PROP = frozenset(
[
(
DimensionProperty.TRANSLATIONAL_EQUIVARIANCE,
DimensionProperty.TRANSLATIONAL_EQUIVARIANCE,
DimensionProperty.NONE,
),
(DimensionProperty.UNSPECIFIED,) * 3,
]
)
VALID_VECTOR_PROP = frozenset(
[(DimensionProperty.NONE,), (DimensionProperty.UNSPECIFIED,)]
)
VALID_VAR_LEN_PROP = frozenset(
[(DimensionProperty.VARIABLE_SIZE, DimensionProperty.NONE)]
)
@staticmethod
def update_learning_rate(optim: torch.optim.Optimizer, lr: float) -> None:
"""
Apply a learning rate to a torch optimizer.
:param optim: Optimizer
:param lr: Learning rate
"""
for param_group in optim.param_groups:
param_group["lr"] = lr
class DecayedValue:
def __init__(
self,
schedule: ScheduleType,
initial_value: float,
min_value: float,
max_step: int,
):
"""
Object that represnets value of a parameter that should be decayed, assuming it is a function of
global_step.
:param schedule: Type of learning rate schedule.
:param initial_value: Initial value before decay.
:param min_value: Decay value to this value by max_step.
:param max_step: The final step count where the return value should equal min_value.
:param global_step: The current step count.
:return: The value.
"""
self.schedule = schedule
self.initial_value = initial_value
self.min_value = min_value
self.max_step = max_step
def get_value(self, global_step: int) -> float:
"""
Get the value at a given global step.
:param global_step: Step count.
:returns: Decayed value at this global step.
"""
if self.schedule == ScheduleType.CONSTANT:
return self.initial_value
elif self.schedule == ScheduleType.LINEAR:
return ModelUtils.polynomial_decay(
self.initial_value, self.min_value, self.max_step, global_step
)
else:
raise UnityTrainerException(f"The schedule {self.schedule} is invalid.")
@staticmethod
def polynomial_decay(
initial_value: float,
min_value: float,
max_step: int,
global_step: int,
power: float = 1.0,
) -> float:
"""
Get a decayed value based on a polynomial schedule, with respect to the current global step.
:param initial_value: Initial value before decay.
:param min_value: Decay value to this value by max_step.
:param max_step: The final step count where the return value should equal min_value.
:param global_step: The current step count.
:param power: Power of polynomial decay. 1.0 (default) is a linear decay.
:return: The current decayed value.
"""
global_step = min(global_step, max_step)
decayed_value = (initial_value - min_value) * (
1 - float(global_step) / max_step
) ** (power) + min_value
return decayed_value
@staticmethod
def get_encoder_for_type(encoder_type: EncoderType) -> nn.Module:
ENCODER_FUNCTION_BY_TYPE = {
EncoderType.SIMPLE: SimpleVisualEncoder,
EncoderType.NATURE_CNN: NatureVisualEncoder,
EncoderType.RESNET: ResNetVisualEncoder,
EncoderType.MATCH3: SmallVisualEncoder,
EncoderType.FULLY_CONNECTED: FullyConnectedVisualEncoder,
}
return ENCODER_FUNCTION_BY_TYPE.get(encoder_type)
@staticmethod
def _check_resolution_for_encoder(
height: int, width: int, vis_encoder_type: EncoderType
) -> None:
min_res = ModelUtils.MIN_RESOLUTION_FOR_ENCODER[vis_encoder_type]
if height < min_res or width < min_res:
raise UnityTrainerException(
f"Visual observation resolution ({width}x{height}) is too small for"
f"the provided EncoderType ({vis_encoder_type.value}). The min dimension is {min_res}"
)
@staticmethod
def get_encoder_for_obs(
obs_spec: ObservationSpec,
normalize: bool,
h_size: int,
attention_embedding_size: int,
vis_encode_type: EncoderType,
) -> Tuple[nn.Module, int]:
"""
Returns the encoder and the size of the appropriate encoder.
:param shape: Tuples that represent the observation dimension.
:param normalize: Normalize all vector inputs.
:param h_size: Number of hidden units per layer excluding attention layers.
:param attention_embedding_size: Number of hidden units per attention layer.
:param vis_encode_type: Type of visual encoder to use.
"""
shape = obs_spec.shape
dim_prop = obs_spec.dimension_property
# VISUAL
if dim_prop in ModelUtils.VALID_VISUAL_PROP:
visual_encoder_class = ModelUtils.get_encoder_for_type(vis_encode_type)
ModelUtils._check_resolution_for_encoder(
shape[0], shape[1], vis_encode_type
)
return (visual_encoder_class(shape[0], shape[1], shape[2], h_size), h_size)
# VECTOR
if dim_prop in ModelUtils.VALID_VECTOR_PROP:
return (VectorInput(shape[0], normalize), shape[0])
# VARIABLE LENGTH
if dim_prop in ModelUtils.VALID_VAR_LEN_PROP:
return (
EntityEmbedding(
entity_size=shape[1],
entity_num_max_elements=shape[0],
embedding_size=attention_embedding_size,
),
0,
)
# OTHER
raise UnityTrainerException(f"Unsupported Sensor with specs {obs_spec}")
@staticmethod
def create_input_processors(
observation_specs: List[ObservationSpec],
h_size: int,
vis_encode_type: EncoderType,
attention_embedding_size: int,
normalize: bool = False,
) -> Tuple[nn.ModuleList, List[int]]:
"""
Creates visual and vector encoders, along with their normalizers.
:param observation_specs: List of ObservationSpec that represent the observation dimensions.
:param action_size: Number of additional un-normalized inputs to each vector encoder. Used for
conditioning network on other values (e.g. actions for a Q function)
:param h_size: Number of hidden units per layer excluding attention layers.
:param attention_embedding_size: Number of hidden units per attention layer.
:param vis_encode_type: Type of visual encoder to use.
:param unnormalized_inputs: Vector inputs that should not be normalized, and added to the vector
obs.
:param normalize: Normalize all vector inputs.
:return: Tuple of :
- ModuleList of the encoders
- A list of embedding sizes (0 if the input requires to be processed with a variable length
observation encoder)
"""
encoders: List[nn.Module] = []
embedding_sizes: List[int] = []
for obs_spec in observation_specs:
encoder, embedding_size = ModelUtils.get_encoder_for_obs(
obs_spec, normalize, h_size, attention_embedding_size, vis_encode_type
)
encoders.append(encoder)
embedding_sizes.append(embedding_size)
x_self_size = sum(embedding_sizes) # The size of the "self" embedding
if x_self_size > 0:
for enc in encoders:
if isinstance(enc, EntityEmbedding):
enc.add_self_embedding(attention_embedding_size)
return (nn.ModuleList(encoders), embedding_sizes)
@staticmethod
def list_to_tensor(
ndarray_list: List[np.ndarray], dtype: Optional[torch.dtype] = torch.float32
) -> torch.Tensor:
"""
Converts a list of numpy arrays into a tensor. MUCH faster than
calling as_tensor on the list directly.
"""
return torch.as_tensor(np.asanyarray(ndarray_list), dtype=dtype)
@staticmethod
def list_to_tensor_list(
ndarray_list: List[np.ndarray], dtype: Optional[torch.dtype] = torch.float32
) -> torch.Tensor:
"""
Converts a list of numpy arrays into a list of tensors. MUCH faster than
calling as_tensor on the list directly.
"""
return [
torch.as_tensor(np.asanyarray(_arr), dtype=dtype) for _arr in ndarray_list
]
@staticmethod
def to_numpy(tensor: torch.Tensor) -> np.ndarray:
"""
Converts a Torch Tensor to a numpy array. If the Tensor is on the GPU, it will
be brought to the CPU.
"""
return tensor.detach().cpu().numpy()
@staticmethod
def break_into_branches(
concatenated_logits: torch.Tensor, action_size: List[int]
) -> List[torch.Tensor]:
"""
Takes a concatenated set of logits that represent multiple discrete action branches
and breaks it up into one Tensor per branch.
:param concatenated_logits: Tensor that represents the concatenated action branches
:param action_size: List of ints containing the number of possible actions for each branch.
:return: A List of Tensors containing one tensor per branch.
"""
action_idx = [0] + list(np.cumsum(action_size))
branched_logits = [
concatenated_logits[:, action_idx[i] : action_idx[i + 1]]
for i in range(len(action_size))
]
return branched_logits
@staticmethod
def actions_to_onehot(
discrete_actions: torch.Tensor, action_size: List[int]
) -> List[torch.Tensor]:
"""
Takes a tensor of discrete actions and turns it into a List of onehot encoding for each
action.
:param discrete_actions: Actions in integer form.
:param action_size: List of branch sizes. Should be of same size as discrete_actions'
last dimension.
:return: List of one-hot tensors, one representing each branch.
"""
onehot_branches = [
torch.nn.functional.one_hot(_act.T, action_size[i]).float()
for i, _act in enumerate(discrete_actions.long().T)
]
return onehot_branches
@staticmethod
def dynamic_partition(
data: torch.Tensor, partitions: torch.Tensor, num_partitions: int
) -> List[torch.Tensor]:
"""
Torch implementation of dynamic_partition :
https://www.tensorflow.org/api_docs/python/tf/dynamic_partition
Splits the data Tensor input into num_partitions Tensors according to the indices in
partitions.
:param data: The Tensor data that will be split into partitions.
:param partitions: An indices tensor that determines in which partition each element
of data will be in.
:param num_partitions: The number of partitions to output. Corresponds to the
maximum possible index in the partitions argument.
:return: A list of Tensor partitions (Their indices correspond to their partition index).
"""
res: List[torch.Tensor] = []
for i in range(num_partitions):
res += [data[(partitions == i).nonzero().squeeze(1)]]
return res
@staticmethod
def masked_mean(tensor: torch.Tensor, masks: torch.Tensor) -> torch.Tensor:
"""
Returns the mean of the tensor but ignoring the values specified by masks.
Used for masking out loss functions.
:param tensor: Tensor which needs mean computation.
:param masks: Boolean tensor of masks with same dimension as tensor.
"""
if tensor.ndim == 0:
return (tensor * masks).sum() / torch.clamp(
(torch.ones_like(tensor) * masks).float().sum(), min=1.0
)
else:
return (
tensor.permute(*torch.arange(tensor.ndim - 1, -1, -1)) * masks
).sum() / torch.clamp(
(
torch.ones_like(
tensor.permute(*torch.arange(tensor.ndim - 1, -1, -1))
)
* masks
)
.float()
.sum(),
min=1.0,
)
@staticmethod
def soft_update(source: nn.Module, target: nn.Module, tau: float) -> None:
"""
Performs an in-place polyak update of the target module based on the source,
by a ratio of tau. Note that source and target modules must have the same
parameters, where:
target = tau * source + (1-tau) * target
:param source: Source module whose parameters will be used.
:param target: Target module whose parameters will be updated.
:param tau: Percentage of source parameters to use in average. Setting tau to
1 will copy the source parameters to the target.
"""
with torch.no_grad():
for source_param, target_param in zip(
source.parameters(), target.parameters()
):
target_param.data.mul_(1.0 - tau)
torch.add(
target_param.data,
source_param.data,
alpha=tau,
out=target_param.data,
)
@staticmethod
def create_residual_self_attention(
input_processors: nn.ModuleList, embedding_sizes: List[int], hidden_size: int
) -> Tuple[Optional[ResidualSelfAttention], Optional[LinearEncoder]]:
"""
Creates an RSA if there are variable length observations found in the input processors.
:param input_processors: A ModuleList of input processors as returned by the function
create_input_processors().
:param embedding sizes: A List of embedding sizes as returned by create_input_processors().
:param hidden_size: The hidden size to use for the RSA.
:returns: A Tuple of the RSA itself, a self encoder, and the embedding size after the RSA.
Returns None for the RSA and encoder if no var len inputs are detected.
"""
rsa, x_self_encoder = None, None
entity_num_max: int = 0
var_processors = [p for p in input_processors if isinstance(p, EntityEmbedding)]
for processor in var_processors:
entity_max: int = processor.entity_num_max_elements
# Only adds entity max if it was known at construction
if entity_max > 0:
entity_num_max += entity_max
if len(var_processors) > 0:
if sum(embedding_sizes):
x_self_encoder = LinearEncoder(
sum(embedding_sizes),
1,
hidden_size,
kernel_init=Initialization.Normal,
kernel_gain=(0.125 / hidden_size) ** 0.5,
)
rsa = ResidualSelfAttention(hidden_size, entity_num_max)
return rsa, x_self_encoder
@staticmethod
def trust_region_value_loss(
values: Dict[str, torch.Tensor],
old_values: Dict[str, torch.Tensor],
returns: Dict[str, torch.Tensor],
epsilon: float,
loss_masks: torch.Tensor,
) -> torch.Tensor:
"""
Evaluates value loss, clipping to stay within a trust region of old value estimates.
Used for PPO and POCA.
:param values: Value output of the current network.
:param old_values: Value stored with experiences in buffer.
:param returns: Computed returns.
:param epsilon: Clipping value for value estimate.
:param loss_mask: Mask for losses. Used with LSTM to ignore 0'ed out experiences.
"""
value_losses = []
for name, head in values.items():
old_val_tensor = old_values[name]
returns_tensor = returns[name]
clipped_value_estimate = old_val_tensor + torch.clamp(
head - old_val_tensor, -1 * epsilon, epsilon
)
v_opt_a = (returns_tensor - head) ** 2
v_opt_b = (returns_tensor - clipped_value_estimate) ** 2
value_loss = ModelUtils.masked_mean(torch.max(v_opt_a, v_opt_b), loss_masks)
value_losses.append(value_loss)
value_loss = torch.mean(torch.stack(value_losses))
return value_loss
@staticmethod
def trust_region_policy_loss(
advantages: torch.Tensor,
log_probs: torch.Tensor,
old_log_probs: torch.Tensor,
loss_masks: torch.Tensor,
epsilon: float,
) -> torch.Tensor:
"""
Evaluate policy loss clipped to stay within a trust region. Used for PPO and POCA.
:param advantages: Computed advantages.
:param log_probs: Current policy probabilities
:param old_log_probs: Past policy probabilities
:param loss_masks: Mask for losses. Used with LSTM to ignore 0'ed out experiences.
"""
advantage = advantages.unsqueeze(-1)
r_theta = torch.exp(log_probs - old_log_probs)
p_opt_a = r_theta * advantage
p_opt_b = torch.clamp(r_theta, 1.0 - epsilon, 1.0 + epsilon) * advantage
policy_loss = -1 * ModelUtils.masked_mean(
torch.min(p_opt_a, p_opt_b), loss_masks
)
return policy_loss