Spaces:
Running
Running
from .functions import defun, defun_wrapped | |
def _hermite_param(ctx, n, z, parabolic_cylinder): | |
""" | |
Combined calculation of the Hermite polynomial H_n(z) (and its | |
generalization to complex n) and the parabolic cylinder | |
function D. | |
""" | |
n, ntyp = ctx._convert_param(n) | |
z = ctx.convert(z) | |
q = -ctx.mpq_1_2 | |
# For re(z) > 0, 2F0 -- http://functions.wolfram.com/ | |
# HypergeometricFunctions/HermiteHGeneral/06/02/0009/ | |
# Otherwise, there is a reflection formula | |
# 2F0 + http://functions.wolfram.com/HypergeometricFunctions/ | |
# HermiteHGeneral/16/01/01/0006/ | |
# | |
# TODO: | |
# An alternative would be to use | |
# http://functions.wolfram.com/HypergeometricFunctions/ | |
# HermiteHGeneral/06/02/0006/ | |
# | |
# Also, the 1F1 expansion | |
# http://functions.wolfram.com/HypergeometricFunctions/ | |
# HermiteHGeneral/26/01/02/0001/ | |
# should probably be used for tiny z | |
if not z: | |
T1 = [2, ctx.pi], [n, 0.5], [], [q*(n-1)], [], [], 0 | |
if parabolic_cylinder: | |
T1[1][0] += q*n | |
return T1, | |
can_use_2f0 = ctx.isnpint(-n) or ctx.re(z) > 0 or \ | |
(ctx.re(z) == 0 and ctx.im(z) > 0) | |
expprec = ctx.prec*4 + 20 | |
if parabolic_cylinder: | |
u = ctx.fmul(ctx.fmul(z,z,prec=expprec), -0.25, exact=True) | |
w = ctx.fmul(z, ctx.sqrt(0.5,prec=expprec), prec=expprec) | |
else: | |
w = z | |
w2 = ctx.fmul(w, w, prec=expprec) | |
rw2 = ctx.fdiv(1, w2, prec=expprec) | |
nrw2 = ctx.fneg(rw2, exact=True) | |
nw = ctx.fneg(w, exact=True) | |
if can_use_2f0: | |
T1 = [2, w], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 | |
terms = [T1] | |
else: | |
T1 = [2, nw], [n, n], [], [], [q*n, q*(n-1)], [], nrw2 | |
T2 = [2, ctx.pi, nw], [n+2, 0.5, 1], [], [q*n], [q*(n-1)], [1-q], w2 | |
terms = [T1,T2] | |
# Multiply by prefactor for D_n | |
if parabolic_cylinder: | |
expu = ctx.exp(u) | |
for i in range(len(terms)): | |
terms[i][1][0] += q*n | |
terms[i][0].append(expu) | |
terms[i][1].append(1) | |
return tuple(terms) | |
def hermite(ctx, n, z, **kwargs): | |
return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 0), [], **kwargs) | |
def pcfd(ctx, n, z, **kwargs): | |
r""" | |
Gives the parabolic cylinder function in Whittaker's notation | |
`D_n(z) = U(-n-1/2, z)` (see :func:`~mpmath.pcfu`). | |
It solves the differential equation | |
.. math :: | |
y'' + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right) y = 0. | |
and can be represented in terms of Hermite polynomials | |
(see :func:`~mpmath.hermite`) as | |
.. math :: | |
D_n(z) = 2^{-n/2} e^{-z^2/4} H_n\left(\frac{z}{\sqrt{2}}\right). | |
**Plots** | |
.. literalinclude :: /plots/pcfd.py | |
.. image :: /plots/pcfd.png | |
**Examples** | |
>>> from mpmath import * | |
>>> mp.dps = 25; mp.pretty = True | |
>>> pcfd(0,0); pcfd(1,0); pcfd(2,0); pcfd(3,0) | |
1.0 | |
0.0 | |
-1.0 | |
0.0 | |
>>> pcfd(4,0); pcfd(-3,0) | |
3.0 | |
0.6266570686577501256039413 | |
>>> pcfd('1/2', 2+3j) | |
(-5.363331161232920734849056 - 3.858877821790010714163487j) | |
>>> pcfd(2, -10) | |
1.374906442631438038871515e-9 | |
Verifying the differential equation:: | |
>>> n = mpf(2.5) | |
>>> y = lambda z: pcfd(n,z) | |
>>> z = 1.75 | |
>>> chop(diff(y,z,2) + (n+0.5-0.25*z**2)*y(z)) | |
0.0 | |
Rational Taylor series expansion when `n` is an integer:: | |
>>> taylor(lambda z: pcfd(5,z), 0, 7) | |
[0.0, 15.0, 0.0, -13.75, 0.0, 3.96875, 0.0, -0.6015625] | |
""" | |
return ctx.hypercomb(lambda: _hermite_param(ctx, n, z, 1), [], **kwargs) | |
def pcfu(ctx, a, z, **kwargs): | |
r""" | |
Gives the parabolic cylinder function `U(a,z)`, which may be | |
defined for `\Re(z) > 0` in terms of the confluent | |
U-function (see :func:`~mpmath.hyperu`) by | |
.. math :: | |
U(a,z) = 2^{-\frac{1}{4}-\frac{a}{2}} e^{-\frac{1}{4} z^2} | |
U\left(\frac{a}{2}+\frac{1}{4}, | |
\frac{1}{2}, \frac{1}{2}z^2\right) | |
or, for arbitrary `z`, | |
.. math :: | |
e^{-\frac{1}{4}z^2} U(a,z) = | |
U(a,0) \,_1F_1\left(-\tfrac{a}{2}+\tfrac{1}{4}; | |
\tfrac{1}{2}; -\tfrac{1}{2}z^2\right) + | |
U'(a,0) z \,_1F_1\left(-\tfrac{a}{2}+\tfrac{3}{4}; | |
\tfrac{3}{2}; -\tfrac{1}{2}z^2\right). | |
**Examples** | |
Connection to other functions:: | |
>>> from mpmath import * | |
>>> mp.dps = 25; mp.pretty = True | |
>>> z = mpf(3) | |
>>> pcfu(0.5,z) | |
0.03210358129311151450551963 | |
>>> sqrt(pi/2)*exp(z**2/4)*erfc(z/sqrt(2)) | |
0.03210358129311151450551963 | |
>>> pcfu(0.5,-z) | |
23.75012332835297233711255 | |
>>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) | |
23.75012332835297233711255 | |
>>> pcfu(0.5,-z) | |
23.75012332835297233711255 | |
>>> sqrt(pi/2)*exp(z**2/4)*erfc(-z/sqrt(2)) | |
23.75012332835297233711255 | |
""" | |
n, _ = ctx._convert_param(a) | |
return ctx.pcfd(-n-ctx.mpq_1_2, z) | |
def pcfv(ctx, a, z, **kwargs): | |
r""" | |
Gives the parabolic cylinder function `V(a,z)`, which can be | |
represented in terms of :func:`~mpmath.pcfu` as | |
.. math :: | |
V(a,z) = \frac{\Gamma(a+\tfrac{1}{2}) (U(a,-z)-\sin(\pi a) U(a,z)}{\pi}. | |
**Examples** | |
Wronskian relation between `U` and `V`:: | |
>>> from mpmath import * | |
>>> mp.dps = 25; mp.pretty = True | |
>>> a, z = 2, 3 | |
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) | |
0.7978845608028653558798921 | |
>>> sqrt(2/pi) | |
0.7978845608028653558798921 | |
>>> a, z = 2.5, 3 | |
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) | |
0.7978845608028653558798921 | |
>>> a, z = 0.25, -1 | |
>>> pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z) | |
0.7978845608028653558798921 | |
>>> a, z = 2+1j, 2+3j | |
>>> chop(pcfu(a,z)*diff(pcfv,(a,z),(0,1))-diff(pcfu,(a,z),(0,1))*pcfv(a,z)) | |
0.7978845608028653558798921 | |
""" | |
n, ntype = ctx._convert_param(a) | |
z = ctx.convert(z) | |
q = ctx.mpq_1_2 | |
r = ctx.mpq_1_4 | |
if ntype == 'Q' and ctx.isint(n*2): | |
# Faster for half-integers | |
def h(): | |
jz = ctx.fmul(z, -1j, exact=True) | |
T1terms = _hermite_param(ctx, -n-q, z, 1) | |
T2terms = _hermite_param(ctx, n-q, jz, 1) | |
for T in T1terms: | |
T[0].append(1j) | |
T[1].append(1) | |
T[3].append(q-n) | |
u = ctx.expjpi((q*n-r)) * ctx.sqrt(2/ctx.pi) | |
for T in T2terms: | |
T[0].append(u) | |
T[1].append(1) | |
return T1terms + T2terms | |
v = ctx.hypercomb(h, [], **kwargs) | |
if ctx._is_real_type(n) and ctx._is_real_type(z): | |
v = ctx._re(v) | |
return v | |
else: | |
def h(n): | |
w = ctx.square_exp_arg(z, -0.25) | |
u = ctx.square_exp_arg(z, 0.5) | |
e = ctx.exp(w) | |
l = [ctx.pi, q, ctx.exp(w)] | |
Y1 = l, [-q, n*q+r, 1], [r-q*n], [], [q*n+r], [q], u | |
Y2 = l + [z], [-q, n*q-r, 1, 1], [1-r-q*n], [], [q*n+1-r], [1+q], u | |
c, s = ctx.cospi_sinpi(r+q*n) | |
Y1[0].append(s) | |
Y2[0].append(c) | |
for Y in (Y1, Y2): | |
Y[1].append(1) | |
Y[3].append(q-n) | |
return Y1, Y2 | |
return ctx.hypercomb(h, [n], **kwargs) | |
def pcfw(ctx, a, z, **kwargs): | |
r""" | |
Gives the parabolic cylinder function `W(a,z)` defined in (DLMF 12.14). | |
**Examples** | |
Value at the origin:: | |
>>> from mpmath import * | |
>>> mp.dps = 25; mp.pretty = True | |
>>> a = mpf(0.25) | |
>>> pcfw(a,0) | |
0.9722833245718180765617104 | |
>>> power(2,-0.75)*sqrt(abs(gamma(0.25+0.5j*a)/gamma(0.75+0.5j*a))) | |
0.9722833245718180765617104 | |
>>> diff(pcfw,(a,0),(0,1)) | |
-0.5142533944210078966003624 | |
>>> -power(2,-0.25)*sqrt(abs(gamma(0.75+0.5j*a)/gamma(0.25+0.5j*a))) | |
-0.5142533944210078966003624 | |
""" | |
n, _ = ctx._convert_param(a) | |
z = ctx.convert(z) | |
def terms(): | |
phi2 = ctx.arg(ctx.gamma(0.5 + ctx.j*n)) | |
phi2 = (ctx.loggamma(0.5+ctx.j*n) - ctx.loggamma(0.5-ctx.j*n))/2j | |
rho = ctx.pi/8 + 0.5*phi2 | |
# XXX: cancellation computing k | |
k = ctx.sqrt(1 + ctx.exp(2*ctx.pi*n)) - ctx.exp(ctx.pi*n) | |
C = ctx.sqrt(k/2) * ctx.exp(0.25*ctx.pi*n) | |
yield C * ctx.expj(rho) * ctx.pcfu(ctx.j*n, z*ctx.expjpi(-0.25)) | |
yield C * ctx.expj(-rho) * ctx.pcfu(-ctx.j*n, z*ctx.expjpi(0.25)) | |
v = ctx.sum_accurately(terms) | |
if ctx._is_real_type(n) and ctx._is_real_type(z): | |
v = ctx._re(v) | |
return v | |
""" | |
Even/odd PCFs. Useful? | |
@defun | |
def pcfy1(ctx, a, z, **kwargs): | |
a, _ = ctx._convert_param(n) | |
z = ctx.convert(z) | |
def h(): | |
w = ctx.square_exp_arg(z) | |
w1 = ctx.fmul(w, -0.25, exact=True) | |
w2 = ctx.fmul(w, 0.5, exact=True) | |
e = ctx.exp(w1) | |
return [e], [1], [], [], [ctx.mpq_1_2*a+ctx.mpq_1_4], [ctx.mpq_1_2], w2 | |
return ctx.hypercomb(h, [], **kwargs) | |
@defun | |
def pcfy2(ctx, a, z, **kwargs): | |
a, _ = ctx._convert_param(n) | |
z = ctx.convert(z) | |
def h(): | |
w = ctx.square_exp_arg(z) | |
w1 = ctx.fmul(w, -0.25, exact=True) | |
w2 = ctx.fmul(w, 0.5, exact=True) | |
e = ctx.exp(w1) | |
return [e, z], [1, 1], [], [], [ctx.mpq_1_2*a+ctx.mpq_3_4], \ | |
[ctx.mpq_3_2], w2 | |
return ctx.hypercomb(h, [], **kwargs) | |
""" | |
def gegenbauer(ctx, n, a, z, **kwargs): | |
# Special cases: a+0.5, a*2 poles | |
if ctx.isnpint(a): | |
return 0*(z+n) | |
if ctx.isnpint(a+0.5): | |
# TODO: something else is required here | |
# E.g.: gegenbauer(-2, -0.5, 3) == -12 | |
if ctx.isnpint(n+1): | |
raise NotImplementedError("Gegenbauer function with two limits") | |
def h(a): | |
a2 = 2*a | |
T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) | |
return [T] | |
return ctx.hypercomb(h, [a], **kwargs) | |
def h(n): | |
a2 = 2*a | |
T = [], [], [n+a2], [n+1, a2], [-n, n+a2], [a+0.5], 0.5*(1-z) | |
return [T] | |
return ctx.hypercomb(h, [n], **kwargs) | |
def jacobi(ctx, n, a, b, x, **kwargs): | |
if not ctx.isnpint(a): | |
def h(n): | |
return (([], [], [a+n+1], [n+1, a+1], [-n, a+b+n+1], [a+1], (1-x)*0.5),) | |
return ctx.hypercomb(h, [n], **kwargs) | |
if not ctx.isint(b): | |
def h(n, a): | |
return (([], [], [-b], [n+1, -b-n], [-n, a+b+n+1], [b+1], (x+1)*0.5),) | |
return ctx.hypercomb(h, [n, a], **kwargs) | |
# XXX: determine appropriate limit | |
return ctx.binomial(n+a,n) * ctx.hyp2f1(-n,1+n+a+b,a+1,(1-x)/2, **kwargs) | |
def laguerre(ctx, n, a, z, **kwargs): | |
# XXX: limits, poles | |
#if ctx.isnpint(n): | |
# return 0*(a+z) | |
def h(a): | |
return (([], [], [a+n+1], [a+1, n+1], [-n], [a+1], z),) | |
return ctx.hypercomb(h, [a], **kwargs) | |
def legendre(ctx, n, x, **kwargs): | |
if ctx.isint(n): | |
n = int(n) | |
# Accuracy near zeros | |
if (n + (n < 0)) & 1: | |
if not x: | |
return x | |
mag = ctx.mag(x) | |
if mag < -2*ctx.prec-10: | |
return x | |
if mag < -5: | |
ctx.prec += -mag | |
return ctx.hyp2f1(-n,n+1,1,(1-x)/2, **kwargs) | |
def legenp(ctx, n, m, z, type=2, **kwargs): | |
# Legendre function, 1st kind | |
n = ctx.convert(n) | |
m = ctx.convert(m) | |
# Faster | |
if not m: | |
return ctx.legendre(n, z, **kwargs) | |
# TODO: correct evaluation at singularities | |
if type == 2: | |
def h(n,m): | |
g = m*0.5 | |
T = [1+z, 1-z], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) | |
return (T,) | |
return ctx.hypercomb(h, [n,m], **kwargs) | |
if type == 3: | |
def h(n,m): | |
g = m*0.5 | |
T = [z+1, z-1], [g, -g], [], [1-m], [-n, n+1], [1-m], 0.5*(1-z) | |
return (T,) | |
return ctx.hypercomb(h, [n,m], **kwargs) | |
raise ValueError("requires type=2 or type=3") | |
def legenq(ctx, n, m, z, type=2, **kwargs): | |
# Legendre function, 2nd kind | |
n = ctx.convert(n) | |
m = ctx.convert(m) | |
z = ctx.convert(z) | |
if z in (1, -1): | |
#if ctx.isint(m): | |
# return ctx.nan | |
#return ctx.inf # unsigned | |
return ctx.nan | |
if type == 2: | |
def h(n, m): | |
cos, sin = ctx.cospi_sinpi(m) | |
s = 2 * sin / ctx.pi | |
c = cos | |
a = 1+z | |
b = 1-z | |
u = m/2 | |
w = (1-z)/2 | |
T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ | |
[-n, n+1], [1-m], w | |
T2 = [-s, a, b], [-1, -u, u], [n+m+1], [n-m+1, m+1], \ | |
[-n, n+1], [m+1], w | |
return T1, T2 | |
return ctx.hypercomb(h, [n, m], **kwargs) | |
if type == 3: | |
# The following is faster when there only is a single series | |
# Note: not valid for -1 < z < 0 (?) | |
if abs(z) > 1: | |
def h(n, m): | |
T1 = [ctx.expjpi(m), 2, ctx.pi, z, z-1, z+1], \ | |
[1, -n-1, 0.5, -n-m-1, 0.5*m, 0.5*m], \ | |
[n+m+1], [n+1.5], \ | |
[0.5*(2+n+m), 0.5*(1+n+m)], [n+1.5], z**(-2) | |
return [T1] | |
return ctx.hypercomb(h, [n, m], **kwargs) | |
else: | |
# not valid for 1 < z < inf ? | |
def h(n, m): | |
s = 2 * ctx.sinpi(m) / ctx.pi | |
c = ctx.expjpi(m) | |
a = 1+z | |
b = z-1 | |
u = m/2 | |
w = (1-z)/2 | |
T1 = [s, c, a, b], [-1, 1, u, -u], [], [1-m], \ | |
[-n, n+1], [1-m], w | |
T2 = [-s, c, a, b], [-1, 1, -u, u], [n+m+1], [n-m+1, m+1], \ | |
[-n, n+1], [m+1], w | |
return T1, T2 | |
return ctx.hypercomb(h, [n, m], **kwargs) | |
raise ValueError("requires type=2 or type=3") | |
def chebyt(ctx, n, x, **kwargs): | |
if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: | |
return x * 0 | |
return ctx.hyp2f1(-n,n,(1,2),(1-x)/2, **kwargs) | |
def chebyu(ctx, n, x, **kwargs): | |
if (not x) and ctx.isint(n) and int(ctx._re(n)) % 2 == 1: | |
return x * 0 | |
return (n+1) * ctx.hyp2f1(-n, n+2, (3,2), (1-x)/2, **kwargs) | |
def spherharm(ctx, l, m, theta, phi, **kwargs): | |
l = ctx.convert(l) | |
m = ctx.convert(m) | |
theta = ctx.convert(theta) | |
phi = ctx.convert(phi) | |
l_isint = ctx.isint(l) | |
l_natural = l_isint and l >= 0 | |
m_isint = ctx.isint(m) | |
if l_isint and l < 0 and m_isint: | |
return ctx.spherharm(-(l+1), m, theta, phi, **kwargs) | |
if theta == 0 and m_isint and m < 0: | |
return ctx.zero * 1j | |
if l_natural and m_isint: | |
if abs(m) > l: | |
return ctx.zero * 1j | |
# http://functions.wolfram.com/Polynomials/ | |
# SphericalHarmonicY/26/01/02/0004/ | |
def h(l,m): | |
absm = abs(m) | |
C = [-1, ctx.expj(m*phi), | |
(2*l+1)*ctx.fac(l+absm)/ctx.pi/ctx.fac(l-absm), | |
ctx.sin(theta)**2, | |
ctx.fac(absm), 2] | |
P = [0.5*m*(ctx.sign(m)+1), 1, 0.5, 0.5*absm, -1, -absm-1] | |
return ((C, P, [], [], [absm-l, l+absm+1], [absm+1], | |
ctx.sin(0.5*theta)**2),) | |
else: | |
# http://functions.wolfram.com/HypergeometricFunctions/ | |
# SphericalHarmonicYGeneral/26/01/02/0001/ | |
def h(l,m): | |
if ctx.isnpint(l-m+1) or ctx.isnpint(l+m+1) or ctx.isnpint(1-m): | |
return (([0], [-1], [], [], [], [], 0),) | |
cos, sin = ctx.cos_sin(0.5*theta) | |
C = [0.5*ctx.expj(m*phi), (2*l+1)/ctx.pi, | |
ctx.gamma(l-m+1), ctx.gamma(l+m+1), | |
cos**2, sin**2] | |
P = [1, 0.5, 0.5, -0.5, 0.5*m, -0.5*m] | |
return ((C, P, [], [1-m], [-l,l+1], [1-m], sin**2),) | |
return ctx.hypercomb(h, [l,m], **kwargs) | |