Spaces:
Running
Running
import pytest | |
np = pytest.importorskip("numpy") | |
sp = pytest.importorskip("scipy") | |
import networkx as nx | |
from networkx.generators.classic import barbell_graph, cycle_graph, path_graph | |
from networkx.utils import graphs_equal | |
class TestConvertScipy: | |
def setup_method(self): | |
self.G1 = barbell_graph(10, 3) | |
self.G2 = cycle_graph(10, create_using=nx.DiGraph) | |
self.G3 = self.create_weighted(nx.Graph()) | |
self.G4 = self.create_weighted(nx.DiGraph()) | |
def test_exceptions(self): | |
class G: | |
format = None | |
pytest.raises(nx.NetworkXError, nx.to_networkx_graph, G) | |
def create_weighted(self, G): | |
g = cycle_graph(4) | |
e = list(g.edges()) | |
source = [u for u, v in e] | |
dest = [v for u, v in e] | |
weight = [s + 10 for s in source] | |
ex = zip(source, dest, weight) | |
G.add_weighted_edges_from(ex) | |
return G | |
def identity_conversion(self, G, A, create_using): | |
GG = nx.from_scipy_sparse_array(A, create_using=create_using) | |
assert nx.is_isomorphic(G, GG) | |
GW = nx.to_networkx_graph(A, create_using=create_using) | |
assert nx.is_isomorphic(G, GW) | |
GI = nx.empty_graph(0, create_using).__class__(A) | |
assert nx.is_isomorphic(G, GI) | |
ACSR = A.tocsr() | |
GI = nx.empty_graph(0, create_using).__class__(ACSR) | |
assert nx.is_isomorphic(G, GI) | |
ACOO = A.tocoo() | |
GI = nx.empty_graph(0, create_using).__class__(ACOO) | |
assert nx.is_isomorphic(G, GI) | |
ACSC = A.tocsc() | |
GI = nx.empty_graph(0, create_using).__class__(ACSC) | |
assert nx.is_isomorphic(G, GI) | |
AD = A.todense() | |
GI = nx.empty_graph(0, create_using).__class__(AD) | |
assert nx.is_isomorphic(G, GI) | |
AA = A.toarray() | |
GI = nx.empty_graph(0, create_using).__class__(AA) | |
assert nx.is_isomorphic(G, GI) | |
def test_shape(self): | |
"Conversion from non-square sparse array." | |
A = sp.sparse.lil_array([[1, 2, 3], [4, 5, 6]]) | |
pytest.raises(nx.NetworkXError, nx.from_scipy_sparse_array, A) | |
def test_identity_graph_matrix(self): | |
"Conversion from graph to sparse matrix to graph." | |
A = nx.to_scipy_sparse_array(self.G1) | |
self.identity_conversion(self.G1, A, nx.Graph()) | |
def test_identity_digraph_matrix(self): | |
"Conversion from digraph to sparse matrix to digraph." | |
A = nx.to_scipy_sparse_array(self.G2) | |
self.identity_conversion(self.G2, A, nx.DiGraph()) | |
def test_identity_weighted_graph_matrix(self): | |
"""Conversion from weighted graph to sparse matrix to weighted graph.""" | |
A = nx.to_scipy_sparse_array(self.G3) | |
self.identity_conversion(self.G3, A, nx.Graph()) | |
def test_identity_weighted_digraph_matrix(self): | |
"""Conversion from weighted digraph to sparse matrix to weighted digraph.""" | |
A = nx.to_scipy_sparse_array(self.G4) | |
self.identity_conversion(self.G4, A, nx.DiGraph()) | |
def test_nodelist(self): | |
"""Conversion from graph to sparse matrix to graph with nodelist.""" | |
P4 = path_graph(4) | |
P3 = path_graph(3) | |
nodelist = list(P3.nodes()) | |
A = nx.to_scipy_sparse_array(P4, nodelist=nodelist) | |
GA = nx.Graph(A) | |
assert nx.is_isomorphic(GA, P3) | |
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=[]) | |
# Test nodelist duplicates. | |
long_nl = nodelist + [0] | |
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=long_nl) | |
# Test nodelist contains non-nodes | |
non_nl = [-1, 0, 1, 2] | |
pytest.raises(nx.NetworkXError, nx.to_scipy_sparse_array, P3, nodelist=non_nl) | |
def test_weight_keyword(self): | |
WP4 = nx.Graph() | |
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) | |
P4 = path_graph(4) | |
A = nx.to_scipy_sparse_array(P4) | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
np.testing.assert_equal( | |
0.5 * A.todense(), nx.to_scipy_sparse_array(WP4).todense() | |
) | |
np.testing.assert_equal( | |
0.3 * A.todense(), nx.to_scipy_sparse_array(WP4, weight="other").todense() | |
) | |
def test_format_keyword(self): | |
WP4 = nx.Graph() | |
WP4.add_edges_from((n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3)) | |
P4 = path_graph(4) | |
A = nx.to_scipy_sparse_array(P4, format="csr") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="csc") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="coo") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="bsr") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="lil") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="dia") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
A = nx.to_scipy_sparse_array(P4, format="dok") | |
np.testing.assert_equal( | |
A.todense(), nx.to_scipy_sparse_array(WP4, weight=None).todense() | |
) | |
def test_format_keyword_raise(self): | |
with pytest.raises(nx.NetworkXError): | |
WP4 = nx.Graph() | |
WP4.add_edges_from( | |
(n, n + 1, {"weight": 0.5, "other": 0.3}) for n in range(3) | |
) | |
P4 = path_graph(4) | |
nx.to_scipy_sparse_array(P4, format="any_other") | |
def test_null_raise(self): | |
with pytest.raises(nx.NetworkXError): | |
nx.to_scipy_sparse_array(nx.Graph()) | |
def test_empty(self): | |
G = nx.Graph() | |
G.add_node(1) | |
M = nx.to_scipy_sparse_array(G) | |
np.testing.assert_equal(M.toarray(), np.array([[0]])) | |
def test_ordering(self): | |
G = nx.DiGraph() | |
G.add_edge(1, 2) | |
G.add_edge(2, 3) | |
G.add_edge(3, 1) | |
M = nx.to_scipy_sparse_array(G, nodelist=[3, 2, 1]) | |
np.testing.assert_equal( | |
M.toarray(), np.array([[0, 0, 1], [1, 0, 0], [0, 1, 0]]) | |
) | |
def test_selfloop_graph(self): | |
G = nx.Graph([(1, 1)]) | |
M = nx.to_scipy_sparse_array(G) | |
np.testing.assert_equal(M.toarray(), np.array([[1]])) | |
G.add_edges_from([(2, 3), (3, 4)]) | |
M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4]) | |
np.testing.assert_equal( | |
M.toarray(), np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) | |
) | |
def test_selfloop_digraph(self): | |
G = nx.DiGraph([(1, 1)]) | |
M = nx.to_scipy_sparse_array(G) | |
np.testing.assert_equal(M.toarray(), np.array([[1]])) | |
G.add_edges_from([(2, 3), (3, 4)]) | |
M = nx.to_scipy_sparse_array(G, nodelist=[2, 3, 4]) | |
np.testing.assert_equal( | |
M.toarray(), np.array([[0, 1, 0], [0, 0, 1], [0, 0, 0]]) | |
) | |
def test_from_scipy_sparse_array_parallel_edges(self): | |
"""Tests that the :func:`networkx.from_scipy_sparse_array` function | |
interprets integer weights as the number of parallel edges when | |
creating a multigraph. | |
""" | |
A = sp.sparse.csr_array([[1, 1], [1, 2]]) | |
# First, with a simple graph, each integer entry in the adjacency | |
# matrix is interpreted as the weight of a single edge in the graph. | |
expected = nx.DiGraph() | |
edges = [(0, 0), (0, 1), (1, 0)] | |
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) | |
expected.add_edge(1, 1, weight=2) | |
actual = nx.from_scipy_sparse_array( | |
A, parallel_edges=True, create_using=nx.DiGraph | |
) | |
assert graphs_equal(actual, expected) | |
actual = nx.from_scipy_sparse_array( | |
A, parallel_edges=False, create_using=nx.DiGraph | |
) | |
assert graphs_equal(actual, expected) | |
# Now each integer entry in the adjacency matrix is interpreted as the | |
# number of parallel edges in the graph if the appropriate keyword | |
# argument is specified. | |
edges = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 1)] | |
expected = nx.MultiDiGraph() | |
expected.add_weighted_edges_from([(u, v, 1) for (u, v) in edges]) | |
actual = nx.from_scipy_sparse_array( | |
A, parallel_edges=True, create_using=nx.MultiDiGraph | |
) | |
assert graphs_equal(actual, expected) | |
expected = nx.MultiDiGraph() | |
expected.add_edges_from(set(edges), weight=1) | |
# The sole self-loop (edge 0) on vertex 1 should have weight 2. | |
expected[1][1][0]["weight"] = 2 | |
actual = nx.from_scipy_sparse_array( | |
A, parallel_edges=False, create_using=nx.MultiDiGraph | |
) | |
assert graphs_equal(actual, expected) | |
def test_symmetric(self): | |
"""Tests that a symmetric matrix has edges added only once to an | |
undirected multigraph when using | |
:func:`networkx.from_scipy_sparse_array`. | |
""" | |
A = sp.sparse.csr_array([[0, 1], [1, 0]]) | |
G = nx.from_scipy_sparse_array(A, create_using=nx.MultiGraph) | |
expected = nx.MultiGraph() | |
expected.add_edge(0, 1, weight=1) | |
assert graphs_equal(G, expected) | |
def test_from_scipy_sparse_array_formats(sparse_format): | |
"""Test all formats supported by _generate_weighted_edges.""" | |
# trinode complete graph with non-uniform edge weights | |
expected = nx.Graph() | |
expected.add_edges_from( | |
[ | |
(0, 1, {"weight": 3}), | |
(0, 2, {"weight": 2}), | |
(1, 0, {"weight": 3}), | |
(1, 2, {"weight": 1}), | |
(2, 0, {"weight": 2}), | |
(2, 1, {"weight": 1}), | |
] | |
) | |
A = sp.sparse.coo_array([[0, 3, 2], [3, 0, 1], [2, 1, 0]]).asformat(sparse_format) | |
assert graphs_equal(expected, nx.from_scipy_sparse_array(A)) | |