Kano001's picture
Upload 919 files
375a1cf verified
"""A set of functions for checking an environment details.
This file is originally from the Stable Baselines3 repository hosted on GitHub
(https://github.com/DLR-RM/stable-baselines3/)
Original Author: Antonin Raffin
It also uses some warnings/assertions from the PettingZoo repository hosted on GitHub
(https://github.com/PettingZoo-Team/PettingZoo)
Original Author: J K Terry
This was rewritten and split into "env_checker.py" and "passive_env_checker.py" for invasive and passive environment checking
Original Author: Mark Towers
These projects are covered by the MIT License.
"""
import inspect
from copy import deepcopy
import numpy as np
import gym
from gym import logger, spaces
from gym.utils.passive_env_checker import (
check_action_space,
check_observation_space,
env_render_passive_checker,
env_reset_passive_checker,
env_step_passive_checker,
)
def data_equivalence(data_1, data_2) -> bool:
"""Assert equality between data 1 and 2, i.e observations, actions, info.
Args:
data_1: data structure 1
data_2: data structure 2
Returns:
If observation 1 and 2 are equivalent
"""
if type(data_1) == type(data_2):
if isinstance(data_1, dict):
return data_1.keys() == data_2.keys() and all(
data_equivalence(data_1[k], data_2[k]) for k in data_1.keys()
)
elif isinstance(data_1, (tuple, list)):
return len(data_1) == len(data_2) and all(
data_equivalence(o_1, o_2) for o_1, o_2 in zip(data_1, data_2)
)
elif isinstance(data_1, np.ndarray):
return data_1.shape == data_2.shape and np.allclose(
data_1, data_2, atol=0.00001
)
else:
return data_1 == data_2
else:
return False
def check_reset_seed(env: gym.Env):
"""Check that the environment can be reset with a seed.
Args:
env: The environment to check
Raises:
AssertionError: The environment cannot be reset with a random seed,
even though `seed` or `kwargs` appear in the signature.
"""
signature = inspect.signature(env.reset)
if "seed" in signature.parameters or (
"kwargs" in signature.parameters
and signature.parameters["kwargs"].kind is inspect.Parameter.VAR_KEYWORD
):
try:
obs_1, info = env.reset(seed=123)
assert (
obs_1 in env.observation_space
), "The observation returned by `env.reset(seed=123)` is not within the observation space."
assert (
env.unwrapped._np_random # pyright: ignore [reportPrivateUsage]
is not None
), "Expects the random number generator to have been generated given a seed was passed to reset. Mostly likely the environment reset function does not call `super().reset(seed=seed)`."
seed_123_rng = deepcopy(
env.unwrapped._np_random # pyright: ignore [reportPrivateUsage]
)
obs_2, info = env.reset(seed=123)
assert (
obs_2 in env.observation_space
), "The observation returned by `env.reset(seed=123)` is not within the observation space."
if env.spec is not None and env.spec.nondeterministic is False:
assert data_equivalence(
obs_1, obs_2
), "Using `env.reset(seed=123)` is non-deterministic as the observations are not equivalent."
assert (
env.unwrapped._np_random.bit_generator.state # pyright: ignore [reportPrivateUsage]
== seed_123_rng.bit_generator.state
), "Mostly likely the environment reset function does not call `super().reset(seed=seed)` as the random generates are not same when the same seeds are passed to `env.reset`."
obs_3, info = env.reset(seed=456)
assert (
obs_3 in env.observation_space
), "The observation returned by `env.reset(seed=456)` is not within the observation space."
assert (
env.unwrapped._np_random.bit_generator.state # pyright: ignore [reportPrivateUsage]
!= seed_123_rng.bit_generator.state
), "Mostly likely the environment reset function does not call `super().reset(seed=seed)` as the random number generators are not different when different seeds are passed to `env.reset`."
except TypeError as e:
raise AssertionError(
"The environment cannot be reset with a random seed, even though `seed` or `kwargs` appear in the signature. "
f"This should never happen, please report this issue. The error was: {e}"
)
seed_param = signature.parameters.get("seed")
# Check the default value is None
if seed_param is not None and seed_param.default is not None:
logger.warn(
"The default seed argument in reset should be `None`, otherwise the environment will by default always be deterministic. "
f"Actual default: {seed_param.default}"
)
else:
raise gym.error.Error(
"The `reset` method does not provide a `seed` or `**kwargs` keyword argument."
)
def check_reset_options(env: gym.Env):
"""Check that the environment can be reset with options.
Args:
env: The environment to check
Raises:
AssertionError: The environment cannot be reset with options,
even though `options` or `kwargs` appear in the signature.
"""
signature = inspect.signature(env.reset)
if "options" in signature.parameters or (
"kwargs" in signature.parameters
and signature.parameters["kwargs"].kind is inspect.Parameter.VAR_KEYWORD
):
try:
env.reset(options={})
except TypeError as e:
raise AssertionError(
"The environment cannot be reset with options, even though `options` or `**kwargs` appear in the signature. "
f"This should never happen, please report this issue. The error was: {e}"
)
else:
raise gym.error.Error(
"The `reset` method does not provide an `options` or `**kwargs` keyword argument."
)
def check_reset_return_info_deprecation(env: gym.Env):
"""Makes sure support for deprecated `return_info` argument is dropped.
Args:
env: The environment to check
Raises:
UserWarning
"""
signature = inspect.signature(env.reset)
if "return_info" in signature.parameters:
logger.warn(
"`return_info` is deprecated as an optional argument to `reset`. `reset`"
"should now always return `obs, info` where `obs` is an observation, and `info` is a dictionary"
"containing additional information."
)
def check_seed_deprecation(env: gym.Env):
"""Makes sure support for deprecated function `seed` is dropped.
Args:
env: The environment to check
Raises:
UserWarning
"""
seed_fn = getattr(env, "seed", None)
if callable(seed_fn):
logger.warn(
"Official support for the `seed` function is dropped. "
"Standard practice is to reset gym environments using `env.reset(seed=<desired seed>)`"
)
def check_reset_return_type(env: gym.Env):
"""Checks that :meth:`reset` correctly returns a tuple of the form `(obs , info)`.
Args:
env: The environment to check
Raises:
AssertionError depending on spec violation
"""
result = env.reset()
assert isinstance(
result, tuple
), f"The result returned by `env.reset()` was not a tuple of the form `(obs, info)`, where `obs` is a observation and `info` is a dictionary containing additional information. Actual type: `{type(result)}`"
assert (
len(result) == 2
), f"Calling the reset method did not return a 2-tuple, actual length: {len(result)}"
obs, info = result
assert (
obs in env.observation_space
), "The first element returned by `env.reset()` is not within the observation space."
assert isinstance(
info, dict
), f"The second element returned by `env.reset()` was not a dictionary, actual type: {type(info)}"
def check_space_limit(space, space_type: str):
"""Check the space limit for only the Box space as a test that only runs as part of `check_env`."""
if isinstance(space, spaces.Box):
if np.any(np.equal(space.low, -np.inf)):
logger.warn(
f"A Box {space_type} space minimum value is -infinity. This is probably too low."
)
if np.any(np.equal(space.high, np.inf)):
logger.warn(
f"A Box {space_type} space maximum value is -infinity. This is probably too high."
)
# Check that the Box space is normalized
if space_type == "action":
if len(space.shape) == 1: # for vector boxes
if (
np.any(
np.logical_and(
space.low != np.zeros_like(space.low),
np.abs(space.low) != np.abs(space.high),
)
)
or np.any(space.low < -1)
or np.any(space.high > 1)
):
# todo - Add to gymlibrary.ml?
logger.warn(
"For Box action spaces, we recommend using a symmetric and normalized space (range=[-1, 1] or [0, 1]). "
"See https://stable-baselines3.readthedocs.io/en/master/guide/rl_tips.html for more information."
)
elif isinstance(space, spaces.Tuple):
for subspace in space.spaces:
check_space_limit(subspace, space_type)
elif isinstance(space, spaces.Dict):
for subspace in space.values():
check_space_limit(subspace, space_type)
def check_env(env: gym.Env, warn: bool = None, skip_render_check: bool = False):
"""Check that an environment follows Gym API.
This is an invasive function that calls the environment's reset and step.
This is particularly useful when using a custom environment.
Please take a look at https://www.gymlibrary.dev/content/environment_creation/
for more information about the API.
Args:
env: The Gym environment that will be checked
warn: Ignored
skip_render_check: Whether to skip the checks for the render method. True by default (useful for the CI)
"""
if warn is not None:
logger.warn("`check_env(warn=...)` parameter is now ignored.")
assert isinstance(
env, gym.Env
), "The environment must inherit from the gym.Env class. See https://www.gymlibrary.dev/content/environment_creation/ for more info."
if env.unwrapped is not env:
logger.warn(
f"The environment ({env}) is different from the unwrapped version ({env.unwrapped}). This could effect the environment checker as the environment most likely has a wrapper applied to it. We recommend using the raw environment for `check_env` using `env.unwrapped`."
)
# ============= Check the spaces (observation and action) ================
assert hasattr(
env, "action_space"
), "The environment must specify an action space. See https://www.gymlibrary.dev/content/environment_creation/ for more info."
check_action_space(env.action_space)
check_space_limit(env.action_space, "action")
assert hasattr(
env, "observation_space"
), "The environment must specify an observation space. See https://www.gymlibrary.dev/content/environment_creation/ for more info."
check_observation_space(env.observation_space)
check_space_limit(env.observation_space, "observation")
# ==== Check the reset method ====
check_seed_deprecation(env)
check_reset_return_info_deprecation(env)
check_reset_return_type(env)
check_reset_seed(env)
check_reset_options(env)
# ============ Check the returned values ===============
env_reset_passive_checker(env)
env_step_passive_checker(env, env.action_space.sample())
# ==== Check the render method and the declared render modes ====
if not skip_render_check:
if env.render_mode is not None:
env_render_passive_checker(env)
# todo: recreate the environment with a different render_mode for check that each work