Spaces:
Running
Running
from .functions import defun, defun_wrapped | |
def _erf_complex(ctx, z): | |
z2 = ctx.square_exp_arg(z, -1) | |
#z2 = -z**2 | |
v = (2/ctx.sqrt(ctx.pi))*z * ctx.hyp1f1((1,2),(3,2), z2) | |
if not ctx._re(z): | |
v = ctx._im(v)*ctx.j | |
return v | |
def _erfc_complex(ctx, z): | |
if ctx.re(z) > 2: | |
z2 = ctx.square_exp_arg(z) | |
nz2 = ctx.fneg(z2, exact=True) | |
v = ctx.exp(nz2)/ctx.sqrt(ctx.pi) * ctx.hyperu((1,2),(1,2), z2) | |
else: | |
v = 1 - ctx._erf_complex(z) | |
if not ctx._re(z): | |
v = 1+ctx._im(v)*ctx.j | |
return v | |
def erf(ctx, z): | |
z = ctx.convert(z) | |
if ctx._is_real_type(z): | |
try: | |
return ctx._erf(z) | |
except NotImplementedError: | |
pass | |
if ctx._is_complex_type(z) and not z.imag: | |
try: | |
return type(z)(ctx._erf(z.real)) | |
except NotImplementedError: | |
pass | |
return ctx._erf_complex(z) | |
def erfc(ctx, z): | |
z = ctx.convert(z) | |
if ctx._is_real_type(z): | |
try: | |
return ctx._erfc(z) | |
except NotImplementedError: | |
pass | |
if ctx._is_complex_type(z) and not z.imag: | |
try: | |
return type(z)(ctx._erfc(z.real)) | |
except NotImplementedError: | |
pass | |
return ctx._erfc_complex(z) | |
def square_exp_arg(ctx, z, mult=1, reciprocal=False): | |
prec = ctx.prec*4+20 | |
if reciprocal: | |
z2 = ctx.fmul(z, z, prec=prec) | |
z2 = ctx.fdiv(ctx.one, z2, prec=prec) | |
else: | |
z2 = ctx.fmul(z, z, prec=prec) | |
if mult != 1: | |
z2 = ctx.fmul(z2, mult, exact=True) | |
return z2 | |
def erfi(ctx, z): | |
if not z: | |
return z | |
z2 = ctx.square_exp_arg(z) | |
v = (2/ctx.sqrt(ctx.pi)*z) * ctx.hyp1f1((1,2), (3,2), z2) | |
if not ctx._re(z): | |
v = ctx._im(v)*ctx.j | |
return v | |
def erfinv(ctx, x): | |
xre = ctx._re(x) | |
if (xre != x) or (xre < -1) or (xre > 1): | |
return ctx.bad_domain("erfinv(x) is defined only for -1 <= x <= 1") | |
x = xre | |
#if ctx.isnan(x): return x | |
if not x: return x | |
if x == 1: return ctx.inf | |
if x == -1: return ctx.ninf | |
if abs(x) < 0.9: | |
a = 0.53728*x**3 + 0.813198*x | |
else: | |
# An asymptotic formula | |
u = ctx.ln(2/ctx.pi/(abs(x)-1)**2) | |
a = ctx.sign(x) * ctx.sqrt(u - ctx.ln(u))/ctx.sqrt(2) | |
ctx.prec += 10 | |
return ctx.findroot(lambda t: ctx.erf(t)-x, a) | |
def npdf(ctx, x, mu=0, sigma=1): | |
sigma = ctx.convert(sigma) | |
return ctx.exp(-(x-mu)**2/(2*sigma**2)) / (sigma*ctx.sqrt(2*ctx.pi)) | |
def ncdf(ctx, x, mu=0, sigma=1): | |
a = (x-mu)/(sigma*ctx.sqrt(2)) | |
if a < 0: | |
return ctx.erfc(-a)/2 | |
else: | |
return (1+ctx.erf(a))/2 | |
def betainc(ctx, a, b, x1=0, x2=1, regularized=False): | |
if x1 == x2: | |
v = 0 | |
elif not x1: | |
if x1 == 0 and x2 == 1: | |
v = ctx.beta(a, b) | |
else: | |
v = x2**a * ctx.hyp2f1(a, 1-b, a+1, x2) / a | |
else: | |
m, d = ctx.nint_distance(a) | |
if m <= 0: | |
if d < -ctx.prec: | |
h = +ctx.eps | |
ctx.prec *= 2 | |
a += h | |
elif d < -4: | |
ctx.prec -= d | |
s1 = x2**a * ctx.hyp2f1(a,1-b,a+1,x2) | |
s2 = x1**a * ctx.hyp2f1(a,1-b,a+1,x1) | |
v = (s1 - s2) / a | |
if regularized: | |
v /= ctx.beta(a,b) | |
return v | |
def gammainc(ctx, z, a=0, b=None, regularized=False): | |
regularized = bool(regularized) | |
z = ctx.convert(z) | |
if a is None: | |
a = ctx.zero | |
lower_modified = False | |
else: | |
a = ctx.convert(a) | |
lower_modified = a != ctx.zero | |
if b is None: | |
b = ctx.inf | |
upper_modified = False | |
else: | |
b = ctx.convert(b) | |
upper_modified = b != ctx.inf | |
# Complete gamma function | |
if not (upper_modified or lower_modified): | |
if regularized: | |
if ctx.re(z) < 0: | |
return ctx.inf | |
elif ctx.re(z) > 0: | |
return ctx.one | |
else: | |
return ctx.nan | |
return ctx.gamma(z) | |
if a == b: | |
return ctx.zero | |
# Standardize | |
if ctx.re(a) > ctx.re(b): | |
return -ctx.gammainc(z, b, a, regularized) | |
# Generalized gamma | |
if upper_modified and lower_modified: | |
return +ctx._gamma3(z, a, b, regularized) | |
# Upper gamma | |
elif lower_modified: | |
return ctx._upper_gamma(z, a, regularized) | |
# Lower gamma | |
elif upper_modified: | |
return ctx._lower_gamma(z, b, regularized) | |
def _lower_gamma(ctx, z, b, regularized=False): | |
# Pole | |
if ctx.isnpint(z): | |
return type(z)(ctx.inf) | |
G = [z] * regularized | |
negb = ctx.fneg(b, exact=True) | |
def h(z): | |
T1 = [ctx.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b | |
return (T1,) | |
return ctx.hypercomb(h, [z]) | |
def _upper_gamma(ctx, z, a, regularized=False): | |
# Fast integer case, when available | |
if ctx.isint(z): | |
try: | |
if regularized: | |
# Gamma pole | |
if ctx.isnpint(z): | |
return type(z)(ctx.zero) | |
orig = ctx.prec | |
try: | |
ctx.prec += 10 | |
return ctx._gamma_upper_int(z, a) / ctx.gamma(z) | |
finally: | |
ctx.prec = orig | |
else: | |
return ctx._gamma_upper_int(z, a) | |
except NotImplementedError: | |
pass | |
# hypercomb is unable to detect the exact zeros, so handle them here | |
if z == 2 and a == -1: | |
return (z+a)*0 | |
if z == 3 and (a == -1-1j or a == -1+1j): | |
return (z+a)*0 | |
nega = ctx.fneg(a, exact=True) | |
G = [z] * regularized | |
# Use 2F0 series when possible; fall back to lower gamma representation | |
try: | |
def h(z): | |
r = z-1 | |
return [([ctx.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)] | |
return ctx.hypercomb(h, [z], force_series=True) | |
except ctx.NoConvergence: | |
def h(z): | |
T1 = [], [1, z-1], [z], G, [], [], 0 | |
T2 = [-ctx.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a | |
return T1, T2 | |
return ctx.hypercomb(h, [z]) | |
def _gamma3(ctx, z, a, b, regularized=False): | |
pole = ctx.isnpint(z) | |
if regularized and pole: | |
return ctx.zero | |
try: | |
ctx.prec += 15 | |
# We don't know in advance whether it's better to write as a difference | |
# of lower or upper gamma functions, so try both | |
T1 = ctx.gammainc(z, a, regularized=regularized) | |
T2 = ctx.gammainc(z, b, regularized=regularized) | |
R = T1 - T2 | |
if ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: | |
return R | |
if not pole: | |
T1 = ctx.gammainc(z, 0, b, regularized=regularized) | |
T2 = ctx.gammainc(z, 0, a, regularized=regularized) | |
R = T1 - T2 | |
# May be ok, but should probably at least print a warning | |
# about possible cancellation | |
if 1: #ctx.mag(R) - max(ctx.mag(T1), ctx.mag(T2)) > -10: | |
return R | |
finally: | |
ctx.prec -= 15 | |
raise NotImplementedError | |
def expint(ctx, n, z): | |
if ctx.isint(n) and ctx._is_real_type(z): | |
try: | |
return ctx._expint_int(n, z) | |
except NotImplementedError: | |
pass | |
if ctx.isnan(n) or ctx.isnan(z): | |
return z*n | |
if z == ctx.inf: | |
return 1/z | |
if z == 0: | |
# integral from 1 to infinity of t^n | |
if ctx.re(n) <= 1: | |
# TODO: reasonable sign of infinity | |
return type(z)(ctx.inf) | |
else: | |
return ctx.one/(n-1) | |
if n == 0: | |
return ctx.exp(-z)/z | |
if n == -1: | |
return ctx.exp(-z)*(z+1)/z**2 | |
return z**(n-1) * ctx.gammainc(1-n, z) | |
def li(ctx, z, offset=False): | |
if offset: | |
if z == 2: | |
return ctx.zero | |
return ctx.ei(ctx.ln(z)) - ctx.ei(ctx.ln2) | |
if not z: | |
return z | |
if z == 1: | |
return ctx.ninf | |
return ctx.ei(ctx.ln(z)) | |
def ei(ctx, z): | |
try: | |
return ctx._ei(z) | |
except NotImplementedError: | |
return ctx._ei_generic(z) | |
def _ei_generic(ctx, z): | |
# Note: the following is currently untested because mp and fp | |
# both use special-case ei code | |
if z == ctx.inf: | |
return z | |
if z == ctx.ninf: | |
return ctx.zero | |
if ctx.mag(z) > 1: | |
try: | |
r = ctx.one/z | |
v = ctx.exp(z)*ctx.hyper([1,1],[],r, | |
maxterms=ctx.prec, force_series=True)/z | |
im = ctx._im(z) | |
if im > 0: | |
v += ctx.pi*ctx.j | |
if im < 0: | |
v -= ctx.pi*ctx.j | |
return v | |
except ctx.NoConvergence: | |
pass | |
v = z*ctx.hyp2f2(1,1,2,2,z) + ctx.euler | |
if ctx._im(z): | |
v += 0.5*(ctx.log(z) - ctx.log(ctx.one/z)) | |
else: | |
v += ctx.log(abs(z)) | |
return v | |
def e1(ctx, z): | |
try: | |
return ctx._e1(z) | |
except NotImplementedError: | |
return ctx.expint(1, z) | |
def ci(ctx, z): | |
try: | |
return ctx._ci(z) | |
except NotImplementedError: | |
return ctx._ci_generic(z) | |
def _ci_generic(ctx, z): | |
if ctx.isinf(z): | |
if z == ctx.inf: return ctx.zero | |
if z == ctx.ninf: return ctx.pi*1j | |
jz = ctx.fmul(ctx.j,z,exact=True) | |
njz = ctx.fneg(jz,exact=True) | |
v = 0.5*(ctx.ei(jz) + ctx.ei(njz)) | |
zreal = ctx._re(z) | |
zimag = ctx._im(z) | |
if zreal == 0: | |
if zimag > 0: v += ctx.pi*0.5j | |
if zimag < 0: v -= ctx.pi*0.5j | |
if zreal < 0: | |
if zimag >= 0: v += ctx.pi*1j | |
if zimag < 0: v -= ctx.pi*1j | |
if ctx._is_real_type(z) and zreal > 0: | |
v = ctx._re(v) | |
return v | |
def si(ctx, z): | |
try: | |
return ctx._si(z) | |
except NotImplementedError: | |
return ctx._si_generic(z) | |
def _si_generic(ctx, z): | |
if ctx.isinf(z): | |
if z == ctx.inf: return 0.5*ctx.pi | |
if z == ctx.ninf: return -0.5*ctx.pi | |
# Suffers from cancellation near 0 | |
if ctx.mag(z) >= -1: | |
jz = ctx.fmul(ctx.j,z,exact=True) | |
njz = ctx.fneg(jz,exact=True) | |
v = (-0.5j)*(ctx.ei(jz) - ctx.ei(njz)) | |
zreal = ctx._re(z) | |
if zreal > 0: | |
v -= 0.5*ctx.pi | |
if zreal < 0: | |
v += 0.5*ctx.pi | |
if ctx._is_real_type(z): | |
v = ctx._re(v) | |
return v | |
else: | |
return z*ctx.hyp1f2((1,2),(3,2),(3,2),-0.25*z*z) | |
def chi(ctx, z): | |
nz = ctx.fneg(z, exact=True) | |
v = 0.5*(ctx.ei(z) + ctx.ei(nz)) | |
zreal = ctx._re(z) | |
zimag = ctx._im(z) | |
if zimag > 0: | |
v += ctx.pi*0.5j | |
elif zimag < 0: | |
v -= ctx.pi*0.5j | |
elif zreal < 0: | |
v += ctx.pi*1j | |
return v | |
def shi(ctx, z): | |
# Suffers from cancellation near 0 | |
if ctx.mag(z) >= -1: | |
nz = ctx.fneg(z, exact=True) | |
v = 0.5*(ctx.ei(z) - ctx.ei(nz)) | |
zimag = ctx._im(z) | |
if zimag > 0: v -= 0.5j*ctx.pi | |
if zimag < 0: v += 0.5j*ctx.pi | |
return v | |
else: | |
return z * ctx.hyp1f2((1,2),(3,2),(3,2),0.25*z*z) | |
def fresnels(ctx, z): | |
if z == ctx.inf: | |
return ctx.mpf(0.5) | |
if z == ctx.ninf: | |
return ctx.mpf(-0.5) | |
return ctx.pi*z**3/6*ctx.hyp1f2((3,4),(3,2),(7,4),-ctx.pi**2*z**4/16) | |
def fresnelc(ctx, z): | |
if z == ctx.inf: | |
return ctx.mpf(0.5) | |
if z == ctx.ninf: | |
return ctx.mpf(-0.5) | |
return z*ctx.hyp1f2((1,4),(1,2),(5,4),-ctx.pi**2*z**4/16) | |