""" Classic cart-pole system implemented by Rich Sutton et al. Copied from http://incompleteideas.net/sutton/book/code/pole.c permalink: https://perma.cc/C9ZM-652R """ import math from typing import Optional, Union import numpy as np import gym from gym import logger, spaces from gym.envs.classic_control import utils from gym.error import DependencyNotInstalled class CartPoleEnv(gym.Env[np.ndarray, Union[int, np.ndarray]]): """ ### Description This environment corresponds to the version of the cart-pole problem described by Barto, Sutton, and Anderson in ["Neuronlike Adaptive Elements That Can Solve Difficult Learning Control Problem"](https://ieeexplore.ieee.org/document/6313077). A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The pendulum is placed upright on the cart and the goal is to balance the pole by applying forces in the left and right direction on the cart. ### Action Space The action is a `ndarray` with shape `(1,)` which can take values `{0, 1}` indicating the direction of the fixed force the cart is pushed with. | Num | Action | |-----|------------------------| | 0 | Push cart to the left | | 1 | Push cart to the right | **Note**: The velocity that is reduced or increased by the applied force is not fixed and it depends on the angle the pole is pointing. The center of gravity of the pole varies the amount of energy needed to move the cart underneath it ### Observation Space The observation is a `ndarray` with shape `(4,)` with the values corresponding to the following positions and velocities: | Num | Observation | Min | Max | |-----|-----------------------|---------------------|-------------------| | 0 | Cart Position | -4.8 | 4.8 | | 1 | Cart Velocity | -Inf | Inf | | 2 | Pole Angle | ~ -0.418 rad (-24°) | ~ 0.418 rad (24°) | | 3 | Pole Angular Velocity | -Inf | Inf | **Note:** While the ranges above denote the possible values for observation space of each element, it is not reflective of the allowed values of the state space in an unterminated episode. Particularly: - The cart x-position (index 0) can be take values between `(-4.8, 4.8)`, but the episode terminates if the cart leaves the `(-2.4, 2.4)` range. - The pole angle can be observed between `(-.418, .418)` radians (or **±24°**), but the episode terminates if the pole angle is not in the range `(-.2095, .2095)` (or **±12°**) ### Rewards Since the goal is to keep the pole upright for as long as possible, a reward of `+1` for every step taken, including the termination step, is allotted. The threshold for rewards is 475 for v1. ### Starting State All observations are assigned a uniformly random value in `(-0.05, 0.05)` ### Episode End The episode ends if any one of the following occurs: 1. Termination: Pole Angle is greater than ±12° 2. Termination: Cart Position is greater than ±2.4 (center of the cart reaches the edge of the display) 3. Truncation: Episode length is greater than 500 (200 for v0) ### Arguments ``` gym.make('CartPole-v1') ``` No additional arguments are currently supported. """ metadata = { "render_modes": ["human", "rgb_array"], "render_fps": 50, } def __init__(self, render_mode: Optional[str] = None): self.gravity = 9.8 self.masscart = 1.0 self.masspole = 0.1 self.total_mass = self.masspole + self.masscart self.length = 0.5 # actually half the pole's length self.polemass_length = self.masspole * self.length self.force_mag = 10.0 self.tau = 0.02 # seconds between state updates self.kinematics_integrator = "euler" # Angle at which to fail the episode self.theta_threshold_radians = 12 * 2 * math.pi / 360 self.x_threshold = 2.4 # Angle limit set to 2 * theta_threshold_radians so failing observation # is still within bounds. high = np.array( [ self.x_threshold * 2, np.finfo(np.float32).max, self.theta_threshold_radians * 2, np.finfo(np.float32).max, ], dtype=np.float32, ) self.action_space = spaces.Discrete(2) self.observation_space = spaces.Box(-high, high, dtype=np.float32) self.render_mode = render_mode self.screen_width = 600 self.screen_height = 400 self.screen = None self.clock = None self.isopen = True self.state = None self.steps_beyond_terminated = None def step(self, action): err_msg = f"{action!r} ({type(action)}) invalid" assert self.action_space.contains(action), err_msg assert self.state is not None, "Call reset before using step method." x, x_dot, theta, theta_dot = self.state force = self.force_mag if action == 1 else -self.force_mag costheta = math.cos(theta) sintheta = math.sin(theta) # For the interested reader: # https://coneural.org/florian/papers/05_cart_pole.pdf temp = ( force + self.polemass_length * theta_dot**2 * sintheta ) / self.total_mass thetaacc = (self.gravity * sintheta - costheta * temp) / ( self.length * (4.0 / 3.0 - self.masspole * costheta**2 / self.total_mass) ) xacc = temp - self.polemass_length * thetaacc * costheta / self.total_mass if self.kinematics_integrator == "euler": x = x + self.tau * x_dot x_dot = x_dot + self.tau * xacc theta = theta + self.tau * theta_dot theta_dot = theta_dot + self.tau * thetaacc else: # semi-implicit euler x_dot = x_dot + self.tau * xacc x = x + self.tau * x_dot theta_dot = theta_dot + self.tau * thetaacc theta = theta + self.tau * theta_dot self.state = (x, x_dot, theta, theta_dot) terminated = bool( x < -self.x_threshold or x > self.x_threshold or theta < -self.theta_threshold_radians or theta > self.theta_threshold_radians ) if not terminated: reward = 1.0 elif self.steps_beyond_terminated is None: # Pole just fell! self.steps_beyond_terminated = 0 reward = 1.0 else: if self.steps_beyond_terminated == 0: logger.warn( "You are calling 'step()' even though this " "environment has already returned terminated = True. You " "should always call 'reset()' once you receive 'terminated = " "True' -- any further steps are undefined behavior." ) self.steps_beyond_terminated += 1 reward = 0.0 if self.render_mode == "human": self.render() return np.array(self.state, dtype=np.float32), reward, terminated, False, {} def reset( self, *, seed: Optional[int] = None, options: Optional[dict] = None, ): super().reset(seed=seed) # Note that if you use custom reset bounds, it may lead to out-of-bound # state/observations. low, high = utils.maybe_parse_reset_bounds( options, -0.05, 0.05 # default low ) # default high self.state = self.np_random.uniform(low=low, high=high, size=(4,)) self.steps_beyond_terminated = None if self.render_mode == "human": self.render() return np.array(self.state, dtype=np.float32), {} def render(self): if self.render_mode is None: gym.logger.warn( "You are calling render method without specifying any render mode. " "You can specify the render_mode at initialization, " f'e.g. gym("{self.spec.id}", render_mode="rgb_array")' ) return try: import pygame from pygame import gfxdraw except ImportError: raise DependencyNotInstalled( "pygame is not installed, run `pip install gym[classic_control]`" ) if self.screen is None: pygame.init() if self.render_mode == "human": pygame.display.init() self.screen = pygame.display.set_mode( (self.screen_width, self.screen_height) ) else: # mode == "rgb_array" self.screen = pygame.Surface((self.screen_width, self.screen_height)) if self.clock is None: self.clock = pygame.time.Clock() world_width = self.x_threshold * 2 scale = self.screen_width / world_width polewidth = 10.0 polelen = scale * (2 * self.length) cartwidth = 50.0 cartheight = 30.0 if self.state is None: return None x = self.state self.surf = pygame.Surface((self.screen_width, self.screen_height)) self.surf.fill((255, 255, 255)) l, r, t, b = -cartwidth / 2, cartwidth / 2, cartheight / 2, -cartheight / 2 axleoffset = cartheight / 4.0 cartx = x[0] * scale + self.screen_width / 2.0 # MIDDLE OF CART carty = 100 # TOP OF CART cart_coords = [(l, b), (l, t), (r, t), (r, b)] cart_coords = [(c[0] + cartx, c[1] + carty) for c in cart_coords] gfxdraw.aapolygon(self.surf, cart_coords, (0, 0, 0)) gfxdraw.filled_polygon(self.surf, cart_coords, (0, 0, 0)) l, r, t, b = ( -polewidth / 2, polewidth / 2, polelen - polewidth / 2, -polewidth / 2, ) pole_coords = [] for coord in [(l, b), (l, t), (r, t), (r, b)]: coord = pygame.math.Vector2(coord).rotate_rad(-x[2]) coord = (coord[0] + cartx, coord[1] + carty + axleoffset) pole_coords.append(coord) gfxdraw.aapolygon(self.surf, pole_coords, (202, 152, 101)) gfxdraw.filled_polygon(self.surf, pole_coords, (202, 152, 101)) gfxdraw.aacircle( self.surf, int(cartx), int(carty + axleoffset), int(polewidth / 2), (129, 132, 203), ) gfxdraw.filled_circle( self.surf, int(cartx), int(carty + axleoffset), int(polewidth / 2), (129, 132, 203), ) gfxdraw.hline(self.surf, 0, self.screen_width, carty, (0, 0, 0)) self.surf = pygame.transform.flip(self.surf, False, True) self.screen.blit(self.surf, (0, 0)) if self.render_mode == "human": pygame.event.pump() self.clock.tick(self.metadata["render_fps"]) pygame.display.flip() elif self.render_mode == "rgb_array": return np.transpose( np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2) ) def close(self): if self.screen is not None: import pygame pygame.display.quit() pygame.quit() self.isopen = False