import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box DEFAULT_CAMERA_CONFIG = { "trackbodyid": 1, "distance": 4.0, "lookat": np.array((0.0, 0.0, 2.0)), "elevation": -20.0, } def mass_center(model, sim): mass = np.expand_dims(model.body_mass, axis=1) xpos = sim.data.xipos return (np.sum(mass * xpos, axis=0) / np.sum(mass))[0:2].copy() class HumanoidEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 67, } def __init__( self, xml_file="humanoid.xml", forward_reward_weight=1.25, ctrl_cost_weight=0.1, contact_cost_weight=5e-7, contact_cost_range=(-np.inf, 10.0), healthy_reward=5.0, terminate_when_unhealthy=True, healthy_z_range=(1.0, 2.0), reset_noise_scale=1e-2, exclude_current_positions_from_observation=True, **kwargs ): utils.EzPickle.__init__( self, xml_file, forward_reward_weight, ctrl_cost_weight, contact_cost_weight, contact_cost_range, healthy_reward, terminate_when_unhealthy, healthy_z_range, reset_noise_scale, exclude_current_positions_from_observation, **kwargs ) self._forward_reward_weight = forward_reward_weight self._ctrl_cost_weight = ctrl_cost_weight self._contact_cost_weight = contact_cost_weight self._contact_cost_range = contact_cost_range self._healthy_reward = healthy_reward self._terminate_when_unhealthy = terminate_when_unhealthy self._healthy_z_range = healthy_z_range self._reset_noise_scale = reset_noise_scale self._exclude_current_positions_from_observation = ( exclude_current_positions_from_observation ) if exclude_current_positions_from_observation: observation_space = Box( low=-np.inf, high=np.inf, shape=(376,), dtype=np.float64 ) else: observation_space = Box( low=-np.inf, high=np.inf, shape=(378,), dtype=np.float64 ) MuJocoPyEnv.__init__( self, xml_file, 5, observation_space=observation_space, **kwargs ) @property def healthy_reward(self): return ( float(self.is_healthy or self._terminate_when_unhealthy) * self._healthy_reward ) def control_cost(self, action): control_cost = self._ctrl_cost_weight * np.sum(np.square(self.sim.data.ctrl)) return control_cost @property def contact_cost(self): contact_forces = self.sim.data.cfrc_ext contact_cost = self._contact_cost_weight * np.sum(np.square(contact_forces)) min_cost, max_cost = self._contact_cost_range contact_cost = np.clip(contact_cost, min_cost, max_cost) return contact_cost @property def is_healthy(self): min_z, max_z = self._healthy_z_range is_healthy = min_z < self.sim.data.qpos[2] < max_z return is_healthy @property def terminated(self): terminated = (not self.is_healthy) if self._terminate_when_unhealthy else False return terminated def _get_obs(self): position = self.sim.data.qpos.flat.copy() velocity = self.sim.data.qvel.flat.copy() com_inertia = self.sim.data.cinert.flat.copy() com_velocity = self.sim.data.cvel.flat.copy() actuator_forces = self.sim.data.qfrc_actuator.flat.copy() external_contact_forces = self.sim.data.cfrc_ext.flat.copy() if self._exclude_current_positions_from_observation: position = position[2:] return np.concatenate( ( position, velocity, com_inertia, com_velocity, actuator_forces, external_contact_forces, ) ) def step(self, action): xy_position_before = mass_center(self.model, self.sim) self.do_simulation(action, self.frame_skip) xy_position_after = mass_center(self.model, self.sim) xy_velocity = (xy_position_after - xy_position_before) / self.dt x_velocity, y_velocity = xy_velocity ctrl_cost = self.control_cost(action) contact_cost = self.contact_cost forward_reward = self._forward_reward_weight * x_velocity healthy_reward = self.healthy_reward rewards = forward_reward + healthy_reward costs = ctrl_cost + contact_cost observation = self._get_obs() reward = rewards - costs terminated = self.terminated info = { "reward_linvel": forward_reward, "reward_quadctrl": -ctrl_cost, "reward_alive": healthy_reward, "reward_impact": -contact_cost, "x_position": xy_position_after[0], "y_position": xy_position_after[1], "distance_from_origin": np.linalg.norm(xy_position_after, ord=2), "x_velocity": x_velocity, "y_velocity": y_velocity, "forward_reward": forward_reward, } if self.render_mode == "human": self.render() return observation, reward, terminated, False, info def reset_model(self): noise_low = -self._reset_noise_scale noise_high = self._reset_noise_scale qpos = self.init_qpos + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nq ) qvel = self.init_qvel + self.np_random.uniform( low=noise_low, high=noise_high, size=self.model.nv ) self.set_state(qpos, qvel) observation = self._get_obs() return observation def viewer_setup(self): assert self.viewer is not None for key, value in DEFAULT_CAMERA_CONFIG.items(): if isinstance(value, np.ndarray): getattr(self.viewer.cam, key)[:] = value else: setattr(self.viewer.cam, key, value)