from contextlib import closing from io import StringIO from os import path from typing import List, Optional import numpy as np from gym import Env, logger, spaces, utils from gym.envs.toy_text.utils import categorical_sample from gym.error import DependencyNotInstalled LEFT = 0 DOWN = 1 RIGHT = 2 UP = 3 MAPS = { "4x4": ["SFFF", "FHFH", "FFFH", "HFFG"], "8x8": [ "SFFFFFFF", "FFFFFFFF", "FFFHFFFF", "FFFFFHFF", "FFFHFFFF", "FHHFFFHF", "FHFFHFHF", "FFFHFFFG", ], } # DFS to check that it's a valid path. def is_valid(board: List[List[str]], max_size: int) -> bool: frontier, discovered = [], set() frontier.append((0, 0)) while frontier: r, c = frontier.pop() if not (r, c) in discovered: discovered.add((r, c)) directions = [(1, 0), (0, 1), (-1, 0), (0, -1)] for x, y in directions: r_new = r + x c_new = c + y if r_new < 0 or r_new >= max_size or c_new < 0 or c_new >= max_size: continue if board[r_new][c_new] == "G": return True if board[r_new][c_new] != "H": frontier.append((r_new, c_new)) return False def generate_random_map(size: int = 8, p: float = 0.8) -> List[str]: """Generates a random valid map (one that has a path from start to goal) Args: size: size of each side of the grid p: probability that a tile is frozen Returns: A random valid map """ valid = False board = [] # initialize to make pyright happy while not valid: p = min(1, p) board = np.random.choice(["F", "H"], (size, size), p=[p, 1 - p]) board[0][0] = "S" board[-1][-1] = "G" valid = is_valid(board, size) return ["".join(x) for x in board] class FrozenLakeEnv(Env): """ Frozen lake involves crossing a frozen lake from Start(S) to Goal(G) without falling into any Holes(H) by walking over the Frozen(F) lake. The agent may not always move in the intended direction due to the slippery nature of the frozen lake. ### Action Space The agent takes a 1-element vector for actions. The action space is `(dir)`, where `dir` decides direction to move in which can be: - 0: LEFT - 1: DOWN - 2: RIGHT - 3: UP ### Observation Space The observation is a value representing the agent's current position as current_row * nrows + current_col (where both the row and col start at 0). For example, the goal position in the 4x4 map can be calculated as follows: 3 * 4 + 3 = 15. The number of possible observations is dependent on the size of the map. For example, the 4x4 map has 16 possible observations. ### Rewards Reward schedule: - Reach goal(G): +1 - Reach hole(H): 0 - Reach frozen(F): 0 ### Arguments ``` gym.make('FrozenLake-v1', desc=None, map_name="4x4", is_slippery=True) ``` `desc`: Used to specify custom map for frozen lake. For example, desc=["SFFF", "FHFH", "FFFH", "HFFG"]. A random generated map can be specified by calling the function `generate_random_map`. For example, ``` from gym.envs.toy_text.frozen_lake import generate_random_map gym.make('FrozenLake-v1', desc=generate_random_map(size=8)) ``` `map_name`: ID to use any of the preloaded maps. "4x4":[ "SFFF", "FHFH", "FFFH", "HFFG" ] "8x8": [ "SFFFFFFF", "FFFFFFFF", "FFFHFFFF", "FFFFFHFF", "FFFHFFFF", "FHHFFFHF", "FHFFHFHF", "FFFHFFFG", ] `is_slippery`: True/False. If True will move in intended direction with probability of 1/3 else will move in either perpendicular direction with equal probability of 1/3 in both directions. For example, if action is left and is_slippery is True, then: - P(move left)=1/3 - P(move up)=1/3 - P(move down)=1/3 ### Version History * v1: Bug fixes to rewards * v0: Initial versions release (1.0.0) """ metadata = { "render_modes": ["human", "ansi", "rgb_array"], "render_fps": 4, } def __init__( self, render_mode: Optional[str] = None, desc=None, map_name="4x4", is_slippery=True, ): if desc is None and map_name is None: desc = generate_random_map() elif desc is None: desc = MAPS[map_name] self.desc = desc = np.asarray(desc, dtype="c") self.nrow, self.ncol = nrow, ncol = desc.shape self.reward_range = (0, 1) nA = 4 nS = nrow * ncol self.initial_state_distrib = np.array(desc == b"S").astype("float64").ravel() self.initial_state_distrib /= self.initial_state_distrib.sum() self.P = {s: {a: [] for a in range(nA)} for s in range(nS)} def to_s(row, col): return row * ncol + col def inc(row, col, a): if a == LEFT: col = max(col - 1, 0) elif a == DOWN: row = min(row + 1, nrow - 1) elif a == RIGHT: col = min(col + 1, ncol - 1) elif a == UP: row = max(row - 1, 0) return (row, col) def update_probability_matrix(row, col, action): newrow, newcol = inc(row, col, action) newstate = to_s(newrow, newcol) newletter = desc[newrow, newcol] terminated = bytes(newletter) in b"GH" reward = float(newletter == b"G") return newstate, reward, terminated for row in range(nrow): for col in range(ncol): s = to_s(row, col) for a in range(4): li = self.P[s][a] letter = desc[row, col] if letter in b"GH": li.append((1.0, s, 0, True)) else: if is_slippery: for b in [(a - 1) % 4, a, (a + 1) % 4]: li.append( (1.0 / 3.0, *update_probability_matrix(row, col, b)) ) else: li.append((1.0, *update_probability_matrix(row, col, a))) self.observation_space = spaces.Discrete(nS) self.action_space = spaces.Discrete(nA) self.render_mode = render_mode # pygame utils self.window_size = (min(64 * ncol, 512), min(64 * nrow, 512)) self.cell_size = ( self.window_size[0] // self.ncol, self.window_size[1] // self.nrow, ) self.window_surface = None self.clock = None self.hole_img = None self.cracked_hole_img = None self.ice_img = None self.elf_images = None self.goal_img = None self.start_img = None def step(self, a): transitions = self.P[self.s][a] i = categorical_sample([t[0] for t in transitions], self.np_random) p, s, r, t = transitions[i] self.s = s self.lastaction = a if self.render_mode == "human": self.render() return (int(s), r, t, False, {"prob": p}) def reset( self, *, seed: Optional[int] = None, options: Optional[dict] = None, ): super().reset(seed=seed) self.s = categorical_sample(self.initial_state_distrib, self.np_random) self.lastaction = None if self.render_mode == "human": self.render() return int(self.s), {"prob": 1} def render(self): if self.render_mode is None: logger.warn( "You are calling render method without specifying any render mode. " "You can specify the render_mode at initialization, " f'e.g. gym("{self.spec.id}", render_mode="rgb_array")' ) elif self.render_mode == "ansi": return self._render_text() else: # self.render_mode in {"human", "rgb_array"}: return self._render_gui(self.render_mode) def _render_gui(self, mode): try: import pygame except ImportError: raise DependencyNotInstalled( "pygame is not installed, run `pip install gym[toy_text]`" ) if self.window_surface is None: pygame.init() if mode == "human": pygame.display.init() pygame.display.set_caption("Frozen Lake") self.window_surface = pygame.display.set_mode(self.window_size) elif mode == "rgb_array": self.window_surface = pygame.Surface(self.window_size) assert ( self.window_surface is not None ), "Something went wrong with pygame. This should never happen." if self.clock is None: self.clock = pygame.time.Clock() if self.hole_img is None: file_name = path.join(path.dirname(__file__), "img/hole.png") self.hole_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.cracked_hole_img is None: file_name = path.join(path.dirname(__file__), "img/cracked_hole.png") self.cracked_hole_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.ice_img is None: file_name = path.join(path.dirname(__file__), "img/ice.png") self.ice_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.goal_img is None: file_name = path.join(path.dirname(__file__), "img/goal.png") self.goal_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.start_img is None: file_name = path.join(path.dirname(__file__), "img/stool.png") self.start_img = pygame.transform.scale( pygame.image.load(file_name), self.cell_size ) if self.elf_images is None: elfs = [ path.join(path.dirname(__file__), "img/elf_left.png"), path.join(path.dirname(__file__), "img/elf_down.png"), path.join(path.dirname(__file__), "img/elf_right.png"), path.join(path.dirname(__file__), "img/elf_up.png"), ] self.elf_images = [ pygame.transform.scale(pygame.image.load(f_name), self.cell_size) for f_name in elfs ] desc = self.desc.tolist() assert isinstance(desc, list), f"desc should be a list or an array, got {desc}" for y in range(self.nrow): for x in range(self.ncol): pos = (x * self.cell_size[0], y * self.cell_size[1]) rect = (*pos, *self.cell_size) self.window_surface.blit(self.ice_img, pos) if desc[y][x] == b"H": self.window_surface.blit(self.hole_img, pos) elif desc[y][x] == b"G": self.window_surface.blit(self.goal_img, pos) elif desc[y][x] == b"S": self.window_surface.blit(self.start_img, pos) pygame.draw.rect(self.window_surface, (180, 200, 230), rect, 1) # paint the elf bot_row, bot_col = self.s // self.ncol, self.s % self.ncol cell_rect = (bot_col * self.cell_size[0], bot_row * self.cell_size[1]) last_action = self.lastaction if self.lastaction is not None else 1 elf_img = self.elf_images[last_action] if desc[bot_row][bot_col] == b"H": self.window_surface.blit(self.cracked_hole_img, cell_rect) else: self.window_surface.blit(elf_img, cell_rect) if mode == "human": pygame.event.pump() pygame.display.update() self.clock.tick(self.metadata["render_fps"]) elif mode == "rgb_array": return np.transpose( np.array(pygame.surfarray.pixels3d(self.window_surface)), axes=(1, 0, 2) ) @staticmethod def _center_small_rect(big_rect, small_dims): offset_w = (big_rect[2] - small_dims[0]) / 2 offset_h = (big_rect[3] - small_dims[1]) / 2 return ( big_rect[0] + offset_w, big_rect[1] + offset_h, ) def _render_text(self): desc = self.desc.tolist() outfile = StringIO() row, col = self.s // self.ncol, self.s % self.ncol desc = [[c.decode("utf-8") for c in line] for line in desc] desc[row][col] = utils.colorize(desc[row][col], "red", highlight=True) if self.lastaction is not None: outfile.write(f" ({['Left', 'Down', 'Right', 'Up'][self.lastaction]})\n") else: outfile.write("\n") outfile.write("\n".join("".join(line) for line in desc) + "\n") with closing(outfile): return outfile.getvalue() def close(self): if self.window_surface is not None: import pygame pygame.display.quit() pygame.quit() # Elf and stool from https://franuka.itch.io/rpg-snow-tileset # All other assets by Mel Tillery http://www.cyaneus.com/