from .functions import defun, defun_wrapped @defun def _jacobi_theta2(ctx, z, q): extra1 = 10 extra2 = 20 # the loops below break when the fixed precision quantities # a and b go to zero; # right shifting small negative numbers by wp one obtains -1, not zero, # so the condition a**2 + b**2 > MIN is used to break the loops. MIN = 2 if z == ctx.zero: if (not ctx._im(q)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 s = x2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << (wp+1)) + (s << 1) s = ctx.ldexp(s, -wp) else: wp = ctx.prec + extra1 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp-1) are = bre = x2re aim = bim = x2im sre = (1< MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) else: if (not ctx._im(q)) and (not ctx._im(z)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s = c1 + ((a * cn) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp s += (a * cn) >> wp s = (s << 1) s = ctx.ldexp(s, -wp) s *= ctx.nthroot(q, 4) return s # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre = c1 + ((are * cn) >> wp) sim = ((aim * cn) >> wp) while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp sre += ((are * cn) >> wp) sim += ((aim * cn) >> wp) sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre = c1re + ((a * cnre) >> wp) sim = c1im + ((a * cnim) >> wp) while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += ((a * cnre) >> wp) sim += ((a * cnim) >> wp) sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = ctx.prec ctx.prec = wp # cos(z), sin(z) with z complex c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 n = 1 termre = c1re termim = c1im sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 3 termre = ((are * cnre - aim * cnim) >> wp) termim = ((are * cnim + aim * cnre) >> wp) sre = c1re + ((are * cnre - aim * cnim) >> wp) sim = c1im + ((are * cnim + aim * cnre) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 termre = ((are * cnre - aim * cnim) >> wp) termim = ((aim * cnre + are * cnim) >> wp) sre += ((are * cnre - aim * cnim) >> wp) sim += ((aim * cnre + are * cnim) >> wp) n += 2 sre = (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) s *= ctx.nthroot(q, 4) return s @defun def _djacobi_theta2(ctx, z, q, nd): MIN = 2 extra1 = 10 extra2 = 20 if (not ctx._im(q)) and (not ctx._im(z)): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): s = s1 + ((a * sn * 3**nd) >> wp) else: s = c1 + ((a * cn * 3**nd) >> wp) n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if nd&1: s += (a * sn * (2*n+1)**nd) >> wp else: s += (a * cn * (2*n+1)**nd) >> wp n += 1 s = -(s << 1) s = ctx.ldexp(s, -wp) # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im c1, s1 = ctx.cos_sin(ctx._re(z), prec=wp) cn = c1 = ctx.to_fixed(c1, wp) sn = s1 = ctx.to_fixed(s1, wp) c2 = (c1*c1 - s1*s1) >> wp s2 = (c1 * s1) >> (wp - 1) cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre = s1 + ((are * sn * 3**nd) >> wp) sim = ((aim * sn * 3**nd) >> wp) else: sre = c1 + ((are * cn * 3**nd) >> wp) sim = ((aim * cn * 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp if (nd&1): sre += ((are * sn * n**nd) >> wp) sim += ((aim * sn * n**nd) >> wp) else: sre += ((are * cn * n**nd) >> wp) sim += ((aim * cn * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) x2 = (x*x) >> wp a = b = x2 prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) #c2 = (c1*c1 - s1*s1) >> wp c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) #s2 = (c1 * s1) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) #cn, sn = (cn*c2 - sn*s2) >> wp, (sn*c2 + cn*s2) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + ((a * snre * 3**nd) >> wp) sim = s1im + ((a * snim * 3**nd) >> wp) else: sre = c1re + ((a * cnre * 3**nd) >> wp) sim = c1im + ((a * cnim * 3**nd) >> wp) n = 5 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += ((a * snre * n**nd) >> wp) sim += ((a * snim * n**nd) >> wp) else: sre += ((a * cnre * n**nd) >> wp) sim += ((a * cnim * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = x2re aim = bim = x2im prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) c2re = (c1re*c1re - c1im*c1im - s1re*s1re + s1im*s1im) >> wp c2im = (c1re*c1im - s1re*s1im) >> (wp - 1) s2re = (c1re*s1re - c1im*s1im) >> (wp - 1) s2im = (c1re*s1im + c1im*s1re) >> (wp - 1) t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre = s1re + (((are * snre - aim * snim) * 3**nd) >> wp) sim = s1im + (((are * snim + aim * snre)* 3**nd) >> wp) else: sre = c1re + (((are * cnre - aim * cnim) * 3**nd) >> wp) sim = c1im + (((are * cnim + aim * cnre)* 3**nd) >> wp) n = 5 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp #cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp t1 = (cnre*c2re - cnim*c2im - snre*s2re + snim*s2im) >> wp t2 = (cnre*c2im + cnim*c2re - snre*s2im - snim*s2re) >> wp t3 = (snre*c2re - snim*c2im + cnre*s2re - cnim*s2im) >> wp t4 = (snre*c2im + snim*c2re + cnre*s2im + cnim*s2re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (((are * snre - aim * snim) * n**nd) >> wp) sim += (((aim * snre + are * snim) * n**nd) >> wp) else: sre += (((are * cnre - aim * cnim) * n**nd) >> wp) sim += (((aim * cnre + are * cnim) * n**nd) >> wp) n += 2 sre = -(sre << 1) sim = -(sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) s *= ctx.nthroot(q, 4) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s @defun def _jacobi_theta3(ctx, z, q): extra1 = 10 extra2 = 20 MIN = 2 if z == ctx.zero: if not ctx._im(q): wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) s = x a = b = x x2 = (x*x) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp s += a s = (1 << wp) + (s << 1) s = ctx.ldexp(s, -wp) return s else: wp = ctx.prec + extra1 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) sre = are = bre = xre sim = aim = bim = xim while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp sre += are sim += aim sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s else: if (not ctx._im(q)) and (not ctx._im(z)): s = 0 wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 s += (a * cn) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp s += (a * cn) >> wp s = (1 << wp) + (s << 1) s = ctx.ldexp(s, -wp) return s # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 sre = (are * cn) >> wp sim = (aim * cn) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp sre += (are * cn) >> wp sim += (aim * cn) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) sre = (a * cnre) >> wp sim = (a * cnim) >> wp while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (a * cnre) >> wp sim += (a * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 sre += (are * cnre - aim * cnim) >> wp sim += (aim * cnre + are * cnim) >> wp sre = (1 << wp) + (sre << 1) sim = (sim << 1) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) return s @defun def _djacobi_theta3(ctx, z, q, nd): """nd=1,2,3 order of the derivative with respect to z""" MIN = 2 extra1 = 10 extra2 = 20 if (not ctx._im(q)) and (not ctx._im(z)): s = 0 wp = ctx.prec + extra1 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): s += (a * sn) >> wp else: s += (a * cn) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: s += (a * sn * n**nd) >> wp else: s += (a * cn * n**nd) >> wp n += 1 s = -(s << (nd+1)) s = ctx.ldexp(s, -wp) # case z real, q complex elif not ctx._im(z): wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim c1, s1 = ctx.cos_sin(ctx._re(z)*2, prec=wp) c1 = ctx.to_fixed(c1, wp) s1 = ctx.to_fixed(s1, wp) cn = c1 sn = s1 if (nd&1): sre = (are * sn) >> wp sim = (aim * sn) >> wp else: sre = (are * cn) >> wp sim = (aim * cn) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp cn, sn = (cn*c1 - sn*s1) >> wp, (sn*c1 + cn*s1) >> wp if nd&1: sre += (are * sn * n**nd) >> wp sim += (aim * sn * n**nd) >> wp else: sre += (are * cn * n**nd) >> wp sim += (aim * cn * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) #case z complex, q real elif not ctx._im(q): wp = ctx.prec + extra2 x = ctx.to_fixed(ctx._re(q), wp) a = b = x x2 = (x*x) >> wp prec0 = ctx.prec ctx.prec = wp c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) if (nd&1): sre = (a * snre) >> wp sim = (a * snim) >> wp else: sre = (a * cnre) >> wp sim = (a * cnim) >> wp n = 2 while abs(a) > MIN: b = (b*x2) >> wp a = (a*b) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if (nd&1): sre += (a * snre * n**nd) >> wp sim += (a * snim * n**nd) >> wp else: sre += (a * cnre * n**nd) >> wp sim += (a * cnim * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) # case z and q complex else: wp = ctx.prec + extra2 xre = ctx.to_fixed(ctx._re(q), wp) xim = ctx.to_fixed(ctx._im(q), wp) x2re = (xre*xre - xim*xim) >> wp x2im = (xre*xim) >> (wp - 1) are = bre = xre aim = bim = xim prec0 = ctx.prec ctx.prec = wp # cos(2*z), sin(2*z) with z complex c1, s1 = ctx.cos_sin(2*z) ctx.prec = prec0 cnre = c1re = ctx.to_fixed(ctx._re(c1), wp) cnim = c1im = ctx.to_fixed(ctx._im(c1), wp) snre = s1re = ctx.to_fixed(ctx._re(s1), wp) snim = s1im = ctx.to_fixed(ctx._im(s1), wp) if (nd&1): sre = (are * snre - aim * snim) >> wp sim = (aim * snre + are * snim) >> wp else: sre = (are * cnre - aim * cnim) >> wp sim = (aim * cnre + are * cnim) >> wp n = 2 while are**2 + aim**2 > MIN: bre, bim = (bre * x2re - bim * x2im) >> wp, \ (bre * x2im + bim * x2re) >> wp are, aim = (are * bre - aim * bim) >> wp, \ (are * bim + aim * bre) >> wp t1 = (cnre*c1re - cnim*c1im - snre*s1re + snim*s1im) >> wp t2 = (cnre*c1im + cnim*c1re - snre*s1im - snim*s1re) >> wp t3 = (snre*c1re - snim*c1im + cnre*s1re - cnim*s1im) >> wp t4 = (snre*c1im + snim*c1re + cnre*s1im + cnim*s1re) >> wp cnre = t1 cnim = t2 snre = t3 snim = t4 if(nd&1): sre += ((are * snre - aim * snim) * n**nd) >> wp sim += ((aim * snre + are * snim) * n**nd) >> wp else: sre += ((are * cnre - aim * cnim) * n**nd) >> wp sim += ((aim * cnre + are * cnim) * n**nd) >> wp n += 1 sre = -(sre << (nd+1)) sim = -(sim << (nd+1)) sre = ctx.ldexp(sre, -wp) sim = ctx.ldexp(sim, -wp) s = ctx.mpc(sre, sim) if (nd&1): return (-1)**(nd//2) * s else: return (-1)**(1 + nd//2) * s @defun def _jacobi_theta2a(ctx, z, q): """ case ctx._im(z) != 0 theta(2, z, q) = q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=-inf, inf) max term for minimum (2*n+1)*log(q).real - 2* ctx._im(z) n0 = int(ctx._im(z)/log(q).real - 1/2) theta(2, z, q) = q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n=n0, inf) + q**1/4 * Sum(q**(n*n + n) * exp(j*(2*n + 1)*z), n, n0-1, -inf) """ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) e2 = ctx.expj(2*z) e = e0 = ctx.expj((2*n+1)*z) a = q**(n*n + n) # leading term term = a * e s = term eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = q**(n*n + n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = q**(n*n + n) * e if abs(term) < eps1: break s += term s = s * ctx.nthroot(q, 4) return s @defun def _jacobi_theta3a(ctx, z, q): """ case ctx._im(z) != 0 theta3(z, q) = Sum(q**(n*n) * exp(j*2*n*z), n, -inf, inf) max term for n*abs(log(q).real) + ctx._im(z) ~= 0 n0 = int(- ctx._im(z)/abs(log(q).real)) """ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) e2 = ctx.expj(2*z) e = e0 = ctx.expj(2*n*z) s = term = q**(n*n) * e eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = q**(n*n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = q**(n*n) * e if abs(term) < eps1: break s += term return s @defun def _djacobi_theta2a(ctx, z, q, nd): """ case ctx._im(z) != 0 dtheta(2, z, q, nd) = j* q**1/4 * Sum(q**(n*n + n) * (2*n+1)*exp(j*(2*n + 1)*z), n=-inf, inf) max term for (2*n0+1)*log(q).real - 2* ctx._im(z) ~= 0 n0 = int(ctx._im(z)/log(q).real - 1/2) """ n = n0 = int(ctx._im(z)/ctx._re(ctx.log(q)) - 1/2) e2 = ctx.expj(2*z) e = e0 = ctx.expj((2*n + 1)*z) a = q**(n*n + n) # leading term term = (2*n+1)**nd * a * e s = term eps1 = ctx.eps*abs(term) while 1: n += 1 e = e * e2 term = (2*n+1)**nd * q**(n*n + n) * e if abs(term) < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 term = (2*n+1)**nd * q**(n*n + n) * e if abs(term) < eps1: break s += term return ctx.j**nd * s * ctx.nthroot(q, 4) @defun def _djacobi_theta3a(ctx, z, q, nd): """ case ctx._im(z) != 0 djtheta3(z, q, nd) = (2*j)**nd * Sum(q**(n*n) * n**nd * exp(j*2*n*z), n, -inf, inf) max term for minimum n*abs(log(q).real) + ctx._im(z) """ n = n0 = int(-ctx._im(z)/abs(ctx._re(ctx.log(q)))) e2 = ctx.expj(2*z) e = e0 = ctx.expj(2*n*z) a = q**(n*n) * e s = term = n**nd * a if n != 0: eps1 = ctx.eps*abs(term) else: eps1 = ctx.eps*abs(a) while 1: n += 1 e = e * e2 a = q**(n*n) * e term = n**nd * a if n != 0: aterm = abs(term) else: aterm = abs(a) if aterm < eps1: break s += term e = e0 e2 = ctx.expj(-2*z) n = n0 while 1: n -= 1 e = e * e2 a = q**(n*n) * e term = n**nd * a if n != 0: aterm = abs(term) else: aterm = abs(a) if aterm < eps1: break s += term return (2*ctx.j)**nd * s @defun def jtheta(ctx, n, z, q, derivative=0): if derivative: return ctx._djtheta(n, z, q, derivative) z = ctx.convert(z) q = ctx.convert(q) # Implementation note # If ctx._im(z) is close to zero, _jacobi_theta2 and _jacobi_theta3 # are used, # which compute the series starting from n=0 using fixed precision # numbers; # otherwise _jacobi_theta2a and _jacobi_theta3a are used, which compute # the series starting from n=n0, which is the largest term. # TODO: write _jacobi_theta2a and _jacobi_theta3a using fixed-point if abs(q) > ctx.THETA_Q_LIM: raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) extra = 10 if z: M = ctx.mag(z) if M > 5 or (n == 1 and M < -5): extra += 2*abs(M) cz = 0.5 extra2 = 50 prec0 = ctx.prec try: ctx.prec += extra if n == 1: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta2(z - ctx.pi/2, q) else: ctx.dps += 10 res = ctx._jacobi_theta2a(z - ctx.pi/2, q) else: res = ctx._jacobi_theta2(z - ctx.pi/2, q) elif n == 2: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta2(z, q) else: ctx.dps += 10 res = ctx._jacobi_theta2a(z, q) else: res = ctx._jacobi_theta2(z, q) elif n == 3: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta3(z, q) else: ctx.dps += 10 res = ctx._jacobi_theta3a(z, q) else: res = ctx._jacobi_theta3(z, q) elif n == 4: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._jacobi_theta3(z, -q) else: ctx.dps += 10 res = ctx._jacobi_theta3a(z, -q) else: res = ctx._jacobi_theta3(z, -q) else: raise ValueError finally: ctx.prec = prec0 return res @defun def _djtheta(ctx, n, z, q, derivative=1): z = ctx.convert(z) q = ctx.convert(q) nd = int(derivative) if abs(q) > ctx.THETA_Q_LIM: raise ValueError('abs(q) > THETA_Q_LIM = %f' % ctx.THETA_Q_LIM) extra = 10 + ctx.prec * nd // 10 if z: M = ctx.mag(z) if M > 5 or (n != 1 and M < -5): extra += 2*abs(M) cz = 0.5 extra2 = 50 prec0 = ctx.prec try: ctx.prec += extra if n == 1: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta2a(z - ctx.pi/2, q, nd) else: res = ctx._djacobi_theta2(z - ctx.pi/2, q, nd) elif n == 2: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta2(z, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta2a(z, q, nd) else: res = ctx._djacobi_theta2(z, q, nd) elif n == 3: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta3(z, q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta3a(z, q, nd) else: res = ctx._djacobi_theta3(z, q, nd) elif n == 4: if ctx._im(z): if abs(ctx._im(z)) < cz * abs(ctx._re(ctx.log(q))): ctx.dps += extra2 res = ctx._djacobi_theta3(z, -q, nd) else: ctx.dps += 10 res = ctx._djacobi_theta3a(z, -q, nd) else: res = ctx._djacobi_theta3(z, -q, nd) else: raise ValueError finally: ctx.prec = prec0 return +res