""" http://incompleteideas.net/MountainCar/MountainCar1.cp permalink: https://perma.cc/6Z2N-PFWC """ import math from typing import Optional import numpy as np import gym from gym import spaces from gym.envs.classic_control import utils from gym.error import DependencyNotInstalled class MountainCarEnv(gym.Env): """ ### Description The Mountain Car MDP is a deterministic MDP that consists of a car placed stochastically at the bottom of a sinusoidal valley, with the only possible actions being the accelerations that can be applied to the car in either direction. The goal of the MDP is to strategically accelerate the car to reach the goal state on top of the right hill. There are two versions of the mountain car domain in gym: one with discrete actions and one with continuous. This version is the one with discrete actions. This MDP first appeared in [Andrew Moore's PhD Thesis (1990)](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-209.pdf) ``` @TECHREPORT{Moore90efficientmemory-based, author = {Andrew William Moore}, title = {Efficient Memory-based Learning for Robot Control}, institution = {University of Cambridge}, year = {1990} } ``` ### Observation Space The observation is a `ndarray` with shape `(2,)` where the elements correspond to the following: | Num | Observation | Min | Max | Unit | |-----|--------------------------------------|------|-----|--------------| | 0 | position of the car along the x-axis | -Inf | Inf | position (m) | | 1 | velocity of the car | -Inf | Inf | position (m) | ### Action Space There are 3 discrete deterministic actions: | Num | Observation | Value | Unit | |-----|-------------------------|-------|--------------| | 0 | Accelerate to the left | Inf | position (m) | | 1 | Don't accelerate | Inf | position (m) | | 2 | Accelerate to the right | Inf | position (m) | ### Transition Dynamics: Given an action, the mountain car follows the following transition dynamics: *velocityt+1 = velocityt + (action - 1) * force - cos(3 * positiont) * gravity* *positiont+1 = positiont + velocityt+1* where force = 0.001 and gravity = 0.0025. The collisions at either end are inelastic with the velocity set to 0 upon collision with the wall. The position is clipped to the range `[-1.2, 0.6]` and velocity is clipped to the range `[-0.07, 0.07]`. ### Reward: The goal is to reach the flag placed on top of the right hill as quickly as possible, as such the agent is penalised with a reward of -1 for each timestep. ### Starting State The position of the car is assigned a uniform random value in *[-0.6 , -0.4]*. The starting velocity of the car is always assigned to 0. ### Episode End The episode ends if either of the following happens: 1. Termination: The position of the car is greater than or equal to 0.5 (the goal position on top of the right hill) 2. Truncation: The length of the episode is 200. ### Arguments ``` gym.make('MountainCar-v0') ``` ### Version History * v0: Initial versions release (1.0.0) """ metadata = { "render_modes": ["human", "rgb_array"], "render_fps": 30, } def __init__(self, render_mode: Optional[str] = None, goal_velocity=0): self.min_position = -1.2 self.max_position = 0.6 self.max_speed = 0.07 self.goal_position = 0.5 self.goal_velocity = goal_velocity self.force = 0.001 self.gravity = 0.0025 self.low = np.array([self.min_position, -self.max_speed], dtype=np.float32) self.high = np.array([self.max_position, self.max_speed], dtype=np.float32) self.render_mode = render_mode self.screen_width = 600 self.screen_height = 400 self.screen = None self.clock = None self.isopen = True self.action_space = spaces.Discrete(3) self.observation_space = spaces.Box(self.low, self.high, dtype=np.float32) def step(self, action: int): assert self.action_space.contains( action ), f"{action!r} ({type(action)}) invalid" position, velocity = self.state velocity += (action - 1) * self.force + math.cos(3 * position) * (-self.gravity) velocity = np.clip(velocity, -self.max_speed, self.max_speed) position += velocity position = np.clip(position, self.min_position, self.max_position) if position == self.min_position and velocity < 0: velocity = 0 terminated = bool( position >= self.goal_position and velocity >= self.goal_velocity ) reward = -1.0 self.state = (position, velocity) if self.render_mode == "human": self.render() return np.array(self.state, dtype=np.float32), reward, terminated, False, {} def reset( self, *, seed: Optional[int] = None, options: Optional[dict] = None, ): super().reset(seed=seed) # Note that if you use custom reset bounds, it may lead to out-of-bound # state/observations. low, high = utils.maybe_parse_reset_bounds(options, -0.6, -0.4) self.state = np.array([self.np_random.uniform(low=low, high=high), 0]) if self.render_mode == "human": self.render() return np.array(self.state, dtype=np.float32), {} def _height(self, xs): return np.sin(3 * xs) * 0.45 + 0.55 def render(self): if self.render_mode is None: gym.logger.warn( "You are calling render method without specifying any render mode. " "You can specify the render_mode at initialization, " f'e.g. gym("{self.spec.id}", render_mode="rgb_array")' ) return try: import pygame from pygame import gfxdraw except ImportError: raise DependencyNotInstalled( "pygame is not installed, run `pip install gym[classic_control]`" ) if self.screen is None: pygame.init() if self.render_mode == "human": pygame.display.init() self.screen = pygame.display.set_mode( (self.screen_width, self.screen_height) ) else: # mode in "rgb_array" self.screen = pygame.Surface((self.screen_width, self.screen_height)) if self.clock is None: self.clock = pygame.time.Clock() world_width = self.max_position - self.min_position scale = self.screen_width / world_width carwidth = 40 carheight = 20 self.surf = pygame.Surface((self.screen_width, self.screen_height)) self.surf.fill((255, 255, 255)) pos = self.state[0] xs = np.linspace(self.min_position, self.max_position, 100) ys = self._height(xs) xys = list(zip((xs - self.min_position) * scale, ys * scale)) pygame.draw.aalines(self.surf, points=xys, closed=False, color=(0, 0, 0)) clearance = 10 l, r, t, b = -carwidth / 2, carwidth / 2, carheight, 0 coords = [] for c in [(l, b), (l, t), (r, t), (r, b)]: c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos)) coords.append( ( c[0] + (pos - self.min_position) * scale, c[1] + clearance + self._height(pos) * scale, ) ) gfxdraw.aapolygon(self.surf, coords, (0, 0, 0)) gfxdraw.filled_polygon(self.surf, coords, (0, 0, 0)) for c in [(carwidth / 4, 0), (-carwidth / 4, 0)]: c = pygame.math.Vector2(c).rotate_rad(math.cos(3 * pos)) wheel = ( int(c[0] + (pos - self.min_position) * scale), int(c[1] + clearance + self._height(pos) * scale), ) gfxdraw.aacircle( self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128) ) gfxdraw.filled_circle( self.surf, wheel[0], wheel[1], int(carheight / 2.5), (128, 128, 128) ) flagx = int((self.goal_position - self.min_position) * scale) flagy1 = int(self._height(self.goal_position) * scale) flagy2 = flagy1 + 50 gfxdraw.vline(self.surf, flagx, flagy1, flagy2, (0, 0, 0)) gfxdraw.aapolygon( self.surf, [(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)], (204, 204, 0), ) gfxdraw.filled_polygon( self.surf, [(flagx, flagy2), (flagx, flagy2 - 10), (flagx + 25, flagy2 - 5)], (204, 204, 0), ) self.surf = pygame.transform.flip(self.surf, False, True) self.screen.blit(self.surf, (0, 0)) if self.render_mode == "human": pygame.event.pump() self.clock.tick(self.metadata["render_fps"]) pygame.display.flip() elif self.render_mode == "rgb_array": return np.transpose( np.array(pygame.surfarray.pixels3d(self.screen)), axes=(1, 0, 2) ) def get_keys_to_action(self): # Control with left and right arrow keys. return {(): 1, (276,): 0, (275,): 2, (275, 276): 1} def close(self): if self.screen is not None: import pygame pygame.display.quit() pygame.quit() self.isopen = False