import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class HumanoidStandupEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 67, } def __init__(self, **kwargs): observation_space = Box( low=-np.inf, high=np.inf, shape=(376,), dtype=np.float64 ) MuJocoPyEnv.__init__( self, "humanoidstandup.xml", 5, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def _get_obs(self): data = self.sim.data return np.concatenate( [ data.qpos.flat[2:], data.qvel.flat, data.cinert.flat, data.cvel.flat, data.qfrc_actuator.flat, data.cfrc_ext.flat, ] ) def step(self, a): self.do_simulation(a, self.frame_skip) pos_after = self.sim.data.qpos[2] data = self.sim.data uph_cost = (pos_after - 0) / self.model.opt.timestep quad_ctrl_cost = 0.1 * np.square(data.ctrl).sum() quad_impact_cost = 0.5e-6 * np.square(data.cfrc_ext).sum() quad_impact_cost = min(quad_impact_cost, 10) reward = uph_cost - quad_ctrl_cost - quad_impact_cost + 1 if self.render_mode == "human": self.render() return ( self._get_obs(), reward, False, False, dict( reward_linup=uph_cost, reward_quadctrl=-quad_ctrl_cost, reward_impact=-quad_impact_cost, ), ) def reset_model(self): c = 0.01 self.set_state( self.init_qpos + self.np_random.uniform(low=-c, high=c, size=self.model.nq), self.init_qvel + self.np_random.uniform( low=-c, high=c, size=self.model.nv, ), ) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.trackbodyid = 1 self.viewer.cam.distance = self.model.stat.extent * 1.0 self.viewer.cam.lookat[2] = 0.8925 self.viewer.cam.elevation = -20