import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class SwimmerEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 25, } def __init__(self, **kwargs): observation_space = Box(low=-np.inf, high=np.inf, shape=(8,), dtype=np.float64) MuJocoPyEnv.__init__( self, "swimmer.xml", 4, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def step(self, a): ctrl_cost_coeff = 0.0001 xposbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) xposafter = self.sim.data.qpos[0] reward_fwd = (xposafter - xposbefore) / self.dt reward_ctrl = -ctrl_cost_coeff * np.square(a).sum() reward = reward_fwd + reward_ctrl ob = self._get_obs() if self.render_mode == "human": self.render() return ( ob, reward, False, False, dict(reward_fwd=reward_fwd, reward_ctrl=reward_ctrl), ) def _get_obs(self): qpos = self.sim.data.qpos qvel = self.sim.data.qvel return np.concatenate([qpos.flat[2:], qvel.flat]) def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-0.1, high=0.1, size=self.model.nv), ) return self._get_obs()