import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class Walker2dEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 125, } def __init__(self, **kwargs): observation_space = Box(low=-np.inf, high=np.inf, shape=(17,), dtype=np.float64) MuJocoPyEnv.__init__( self, "walker2d.xml", 4, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def step(self, a): posbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) posafter, height, ang = self.sim.data.qpos[0:3] alive_bonus = 1.0 reward = (posafter - posbefore) / self.dt reward += alive_bonus reward -= 1e-3 * np.square(a).sum() terminated = not (height > 0.8 and height < 2.0 and ang > -1.0 and ang < 1.0) ob = self._get_obs() if self.render_mode == "human": self.render() return ob, reward, terminated, False, {} def _get_obs(self): qpos = self.sim.data.qpos qvel = self.sim.data.qvel return np.concatenate([qpos[1:], np.clip(qvel, -10, 10)]).ravel() def reset_model(self): self.set_state( self.init_qpos + self.np_random.uniform(low=-0.005, high=0.005, size=self.model.nq), self.init_qvel + self.np_random.uniform(low=-0.005, high=0.005, size=self.model.nv), ) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.trackbodyid = 2 self.viewer.cam.distance = self.model.stat.extent * 0.5 self.viewer.cam.lookat[2] = 1.15 self.viewer.cam.elevation = -20