"""Wrapper for transforming observations.""" from typing import Any, Callable import gym class TransformObservation(gym.ObservationWrapper): """Transform the observation via an arbitrary function :attr:`f`. The function :attr:`f` should be defined on the observation space of the base environment, ``env``, and should, ideally, return values in the same space. If the transformation you wish to apply to observations returns values in a *different* space, you should subclass :class:`ObservationWrapper`, implement the transformation, and set the new observation space accordingly. If you were to use this wrapper instead, the observation space would be set incorrectly. Example: >>> import gym >>> import numpy as np >>> env = gym.make('CartPole-v1') >>> env = TransformObservation(env, lambda obs: obs + 0.1*np.random.randn(*obs.shape)) >>> env.reset() array([-0.08319338, 0.04635121, -0.07394746, 0.20877492]) """ def __init__(self, env: gym.Env, f: Callable[[Any], Any]): """Initialize the :class:`TransformObservation` wrapper with an environment and a transform function :param:`f`. Args: env: The environment to apply the wrapper f: A function that transforms the observation """ super().__init__(env) assert callable(f) self.f = f def observation(self, observation): """Transforms the observations with callable :attr:`f`. Args: observation: The observation to transform Returns: The transformed observation """ return self.f(observation)