import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class AntEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 20, } def __init__(self, **kwargs): observation_space = Box( low=-np.inf, high=np.inf, shape=(111,), dtype=np.float64 ) MuJocoPyEnv.__init__( self, "ant.xml", 5, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def step(self, a): xposbefore = self.get_body_com("torso")[0] self.do_simulation(a, self.frame_skip) xposafter = self.get_body_com("torso")[0] forward_reward = (xposafter - xposbefore) / self.dt ctrl_cost = 0.5 * np.square(a).sum() contact_cost = ( 0.5 * 1e-3 * np.sum(np.square(np.clip(self.sim.data.cfrc_ext, -1, 1))) ) survive_reward = 1.0 reward = forward_reward - ctrl_cost - contact_cost + survive_reward state = self.state_vector() not_terminated = ( np.isfinite(state).all() and state[2] >= 0.2 and state[2] <= 1.0 ) terminated = not not_terminated ob = self._get_obs() if self.render_mode == "human": self.render() return ( ob, reward, terminated, False, dict( reward_forward=forward_reward, reward_ctrl=-ctrl_cost, reward_contact=-contact_cost, reward_survive=survive_reward, ), ) def _get_obs(self): return np.concatenate( [ self.sim.data.qpos.flat[2:], self.sim.data.qvel.flat, np.clip(self.sim.data.cfrc_ext, -1, 1).flat, ] ) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( size=self.model.nq, low=-0.1, high=0.1 ) qvel = self.init_qvel + self.np_random.standard_normal(self.model.nv) * 0.1 self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.distance = self.model.stat.extent * 0.5