import numpy as np from gym import utils from gym.envs.mujoco import MuJocoPyEnv from gym.spaces import Box class HopperEnv(MuJocoPyEnv, utils.EzPickle): metadata = { "render_modes": [ "human", "rgb_array", "depth_array", ], "render_fps": 125, } def __init__(self, **kwargs): observation_space = Box(low=-np.inf, high=np.inf, shape=(11,), dtype=np.float64) MuJocoPyEnv.__init__( self, "hopper.xml", 4, observation_space=observation_space, **kwargs ) utils.EzPickle.__init__(self, **kwargs) def step(self, a): posbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) posafter, height, ang = self.sim.data.qpos[0:3] alive_bonus = 1.0 reward = (posafter - posbefore) / self.dt reward += alive_bonus reward -= 1e-3 * np.square(a).sum() s = self.state_vector() terminated = not ( np.isfinite(s).all() and (np.abs(s[2:]) < 100).all() and (height > 0.7) and (abs(ang) < 0.2) ) ob = self._get_obs() if self.render_mode == "human": self.render() return ob, reward, terminated, False, {} def _get_obs(self): return np.concatenate( [self.sim.data.qpos.flat[1:], np.clip(self.sim.data.qvel.flat, -10, 10)] ) def reset_model(self): qpos = self.init_qpos + self.np_random.uniform( low=-0.005, high=0.005, size=self.model.nq ) qvel = self.init_qvel + self.np_random.uniform( low=-0.005, high=0.005, size=self.model.nv ) self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): assert self.viewer is not None self.viewer.cam.trackbodyid = 2 self.viewer.cam.distance = self.model.stat.extent * 0.75 self.viewer.cam.lookat[2] = 1.15 self.viewer.cam.elevation = -20