""" The function zetazero(n) computes the n-th nontrivial zero of zeta(s). The general strategy is to locate a block of Gram intervals B where we know exactly the number of zeros contained and which of those zeros is that which we search. If n <= 400 000 000 we know exactly the Rosser exceptions, contained in a list in this file. Hence for n<=400 000 000 we simply look at these list of exceptions. If our zero is implicated in one of these exceptions we have our block B. In other case we simply locate the good Rosser block containing our zero. For n > 400 000 000 we apply the method of Turing, as complemented by Lehman, Brent and Trudgian to find a suitable B. """ from .functions import defun, defun_wrapped def find_rosser_block_zero(ctx, n): """for n<400 000 000 determines a block were one find our zero""" for k in range(len(_ROSSER_EXCEPTIONS)//2): a=_ROSSER_EXCEPTIONS[2*k][0] b=_ROSSER_EXCEPTIONS[2*k][1] if ((a<= n-2) and (n-1 <= b)): t0 = ctx.grampoint(a) t1 = ctx.grampoint(b) v0 = ctx._fp.siegelz(t0) v1 = ctx._fp.siegelz(t1) my_zero_number = n-a-1 zero_number_block = b-a pattern = _ROSSER_EXCEPTIONS[2*k+1] return (my_zero_number, [a,b], [t0,t1], [v0,v1]) k = n-2 t,v,b = compute_triple_tvb(ctx, k) T = [t] V = [v] while b < 0: k -= 1 t,v,b = compute_triple_tvb(ctx, k) T.insert(0,t) V.insert(0,v) my_zero_number = n-k-1 m = n-1 t,v,b = compute_triple_tvb(ctx, m) T.append(t) V.append(v) while b < 0: m += 1 t,v,b = compute_triple_tvb(ctx, m) T.append(t) V.append(v) return (my_zero_number, [k,m], T, V) def wpzeros(t): """Precision needed to compute higher zeros""" wp = 53 if t > 3*10**8: wp = 63 if t > 10**11: wp = 70 if t > 10**14: wp = 83 return wp def separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=None, fp_tolerance=None): """Separate the zeros contained in the block T, limitloop determines how long one must search""" if limitloop is None: limitloop = ctx.inf loopnumber = 0 variations = count_variations(V) while ((variations < zero_number_block) and (loopnumber 0): alpha = ctx.sqrt(u/v) b= (alpha*a+b2)/(alpha+1) else: b = (a+b2)/2 if fp_tolerance < 10: w = ctx._fp.siegelz(b) if abs(w)ITERATION_LIMIT)and(loopnumber>2)and(variations+2==zero_number_block): dtMax=0 dtSec=0 kMax = 0 for k1 in range(1,len(T)): dt = T[k1]-T[k1-1] if dt > dtMax: kMax=k1 dtSec = dtMax dtMax = dt elif (dtdtSec): dtSec = dt if dtMax>3*dtSec: f = lambda x: ctx.rs_z(x,derivative=1) t0=T[kMax-1] t1 = T[kMax] t=ctx.findroot(f, (t0,t1), solver ='illinois',verify=False, verbose=False) v = ctx.siegelz(t) if (t0 2*wpz: index +=1 precs = [precs[0] // 2 +3+2*index] + precs ctx.prec = precs[0] + guard r = ctx.findroot(lambda x:ctx.siegelz(x), (t0,t1), solver ='illinois', verbose=False) #print "first step at", ctx.dps, "digits" z=ctx.mpc(0.5,r) for prec in precs[1:]: ctx.prec = prec + guard #print "refining to", ctx.dps, "digits" znew = z - ctx.zeta(z) / ctx.zeta(z, derivative=1) #print "difference", ctx.nstr(abs(z-znew)) z=ctx.mpc(0.5,ctx.im(znew)) return ctx.im(z) def sure_number_block(ctx, n): """The number of good Rosser blocks needed to apply Turing method References: R. P. Brent, On the Zeros of the Riemann Zeta Function in the Critical Strip, Math. Comp. 33 (1979) 1361--1372 T. Trudgian, Improvements to Turing Method, Math. Comp.""" if n < 9*10**5: return(2) g = ctx.grampoint(n-100) lg = ctx._fp.ln(g) brent = 0.0061 * lg**2 +0.08*lg trudgian = 0.0031 * lg**2 +0.11*lg N = ctx.ceil(min(brent,trudgian)) N = int(N) return N def compute_triple_tvb(ctx, n): t = ctx.grampoint(n) v = ctx._fp.siegelz(t) if ctx.mag(abs(v))400 000 000""" sb = sure_number_block(ctx, n) number_goodblocks = 0 m2 = n-1 t, v, b = compute_triple_tvb(ctx, m2) Tf = [t] Vf = [v] while b < 0: m2 += 1 t,v,b = compute_triple_tvb(ctx, m2) Tf.append(t) Vf.append(v) goodpoints = [m2] T = [t] V = [v] while number_goodblocks < 2*sb: m2 += 1 t, v, b = compute_triple_tvb(ctx, m2) T.append(t) V.append(v) while b < 0: m2 += 1 t,v,b = compute_triple_tvb(ctx, m2) T.append(t) V.append(v) goodpoints.append(m2) zn = len(T)-1 A, B, separated =\ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) Tf.pop() Tf.extend(A) Vf.pop() Vf.extend(B) if separated: number_goodblocks += 1 else: number_goodblocks = 0 T = [t] V = [v] # Now the same procedure to the left number_goodblocks = 0 m2 = n-2 t, v, b = compute_triple_tvb(ctx, m2) Tf.insert(0,t) Vf.insert(0,v) while b < 0: m2 -= 1 t,v,b = compute_triple_tvb(ctx, m2) Tf.insert(0,t) Vf.insert(0,v) goodpoints.insert(0,m2) T = [t] V = [v] while number_goodblocks < 2*sb: m2 -= 1 t, v, b = compute_triple_tvb(ctx, m2) T.insert(0,t) V.insert(0,v) while b < 0: m2 -= 1 t,v,b = compute_triple_tvb(ctx, m2) T.insert(0,t) V.insert(0,v) goodpoints.insert(0,m2) zn = len(T)-1 A, B, separated =\ separate_zeros_in_block(ctx, zn, T, V, limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) A.pop() Tf = A+Tf B.pop() Vf = B+Vf if separated: number_goodblocks += 1 else: number_goodblocks = 0 T = [t] V = [v] r = goodpoints[2*sb] lg = len(goodpoints) s = goodpoints[lg-2*sb-1] tr, vr, br = compute_triple_tvb(ctx, r) ar = Tf.index(tr) ts, vs, bs = compute_triple_tvb(ctx, s) as1 = Tf.index(ts) T = Tf[ar:as1+1] V = Vf[ar:as1+1] zn = s-r A, B, separated =\ separate_zeros_in_block(ctx, zn,T,V,limitloop=ITERATION_LIMIT, fp_tolerance=fp_tolerance) if separated: return (n-r-1,[r,s],A,B) q = goodpoints[sb] lg = len(goodpoints) t = goodpoints[lg-sb-1] tq, vq, bq = compute_triple_tvb(ctx, q) aq = Tf.index(tq) tt, vt, bt = compute_triple_tvb(ctx, t) at = Tf.index(tt) T = Tf[aq:at+1] V = Vf[aq:at+1] return (n-q-1,[q,t],T,V) def count_variations(V): count = 0 vold = V[0] for n in range(1, len(V)): vnew = V[n] if vold*vnew < 0: count +=1 vold = vnew return count def pattern_construct(ctx, block, T, V): pattern = '(' a = block[0] b = block[1] t0,v0,b0 = compute_triple_tvb(ctx, a) k = 0 k0 = 0 for n in range(a+1,b+1): t1,v1,b1 = compute_triple_tvb(ctx, n) lgT =len(T) while (k < lgT) and (T[k] <= t1): k += 1 L = V[k0:k] L.append(v1) L.insert(0,v0) count = count_variations(L) pattern = pattern + ("%s" % count) if b1 > 0: pattern = pattern + ')(' k0 = k t0,v0,b0 = t1,v1,b1 pattern = pattern[:-1] return pattern @defun def zetazero(ctx, n, info=False, round=True): r""" Computes the `n`-th nontrivial zero of `\zeta(s)` on the critical line, i.e. returns an approximation of the `n`-th largest complex number `s = \frac{1}{2} + ti` for which `\zeta(s) = 0`. Equivalently, the imaginary part `t` is a zero of the Z-function (:func:`~mpmath.siegelz`). **Examples** The first few zeros:: >>> from mpmath import * >>> mp.dps = 25; mp.pretty = True >>> zetazero(1) (0.5 + 14.13472514173469379045725j) >>> zetazero(2) (0.5 + 21.02203963877155499262848j) >>> zetazero(20) (0.5 + 77.14484006887480537268266j) Verifying that the values are zeros:: >>> for n in range(1,5): ... s = zetazero(n) ... chop(zeta(s)), chop(siegelz(s.imag)) ... (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) (0.0, 0.0) Negative indices give the conjugate zeros (`n = 0` is undefined):: >>> zetazero(-1) (0.5 - 14.13472514173469379045725j) :func:`~mpmath.zetazero` supports arbitrarily large `n` and arbitrary precision:: >>> mp.dps = 15 >>> zetazero(1234567) (0.5 + 727690.906948208j) >>> mp.dps = 50 >>> zetazero(1234567) (0.5 + 727690.9069482075392389420041147142092708393819935j) >>> chop(zeta(_)/_) 0.0 with *info=True*, :func:`~mpmath.zetazero` gives additional information:: >>> mp.dps = 15 >>> zetazero(542964976,info=True) ((0.5 + 209039046.578535j), [542964969, 542964978], 6, '(013111110)') This means that the zero is between Gram points 542964969 and 542964978; it is the 6-th zero between them. Finally (01311110) is the pattern of zeros in this interval. The numbers indicate the number of zeros in each Gram interval (Rosser blocks between parenthesis). In this case there is only one Rosser block of length nine. """ n = int(n) if n < 0: return ctx.zetazero(-n).conjugate() if n == 0: raise ValueError("n must be nonzero") wpinitial = ctx.prec try: wpz, fp_tolerance = comp_fp_tolerance(ctx, n) ctx.prec = wpz if n < 400000000: my_zero_number, block, T, V =\ find_rosser_block_zero(ctx, n) else: my_zero_number, block, T, V =\ search_supergood_block(ctx, n, fp_tolerance) zero_number_block = block[1]-block[0] T, V, separated = separate_zeros_in_block(ctx, zero_number_block, T, V, limitloop=ctx.inf, fp_tolerance=fp_tolerance) if info: pattern = pattern_construct(ctx,block,T,V) prec = max(wpinitial, wpz) t = separate_my_zero(ctx, my_zero_number, zero_number_block,T,V,prec) v = ctx.mpc(0.5,t) finally: ctx.prec = wpinitial if round: v =+v if info: return (v,block,my_zero_number,pattern) else: return v def gram_index(ctx, t): if t > 10**13: wp = 3*ctx.log(t, 10) else: wp = 0 prec = ctx.prec try: ctx.prec += wp h = int(ctx.siegeltheta(t)/ctx.pi) finally: ctx.prec = prec return(h) def count_to(ctx, t, T, V): count = 0 vold = V[0] told = T[0] tnew = T[1] k = 1 while tnew < t: vnew = V[k] if vold*vnew < 0: count += 1 vold = vnew k += 1 tnew = T[k] a = ctx.siegelz(t) if a*vold < 0: count += 1 return count def comp_fp_tolerance(ctx, n): wpz = wpzeros(n*ctx.log(n)) if n < 15*10**8: fp_tolerance = 0.0005 elif n <= 10**14: fp_tolerance = 0.1 else: fp_tolerance = 100 return wpz, fp_tolerance @defun def nzeros(ctx, t): r""" Computes the number of zeros of the Riemann zeta function in `(0,1) \times (0,t]`, usually denoted by `N(t)`. **Examples** The first zero has imaginary part between 14 and 15:: >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> nzeros(14) 0 >>> nzeros(15) 1 >>> zetazero(1) (0.5 + 14.1347251417347j) Some closely spaced zeros:: >>> nzeros(10**7) 21136125 >>> zetazero(21136125) (0.5 + 9999999.32718175j) >>> zetazero(21136126) (0.5 + 10000000.2400236j) >>> nzeros(545439823.215) 1500000001 >>> zetazero(1500000001) (0.5 + 545439823.201985j) >>> zetazero(1500000002) (0.5 + 545439823.325697j) This confirms the data given by J. van de Lune, H. J. J. te Riele and D. T. Winter in 1986. """ if t < 14.1347251417347: return 0 x = gram_index(ctx, t) k = int(ctx.floor(x)) wpinitial = ctx.prec wpz, fp_tolerance = comp_fp_tolerance(ctx, k) ctx.prec = wpz a = ctx.siegelz(t) if k == -1 and a < 0: return 0 elif k == -1 and a > 0: return 1 if k+2 < 400000000: Rblock = find_rosser_block_zero(ctx, k+2) else: Rblock = search_supergood_block(ctx, k+2, fp_tolerance) n1, n2 = Rblock[1] if n2-n1 == 1: b = Rblock[3][0] if a*b > 0: ctx.prec = wpinitial return k+1 else: ctx.prec = wpinitial return k+2 my_zero_number,block, T, V = Rblock zero_number_block = n2-n1 T, V, separated = separate_zeros_in_block(ctx,\ zero_number_block, T, V,\ limitloop=ctx.inf,\ fp_tolerance=fp_tolerance) n = count_to(ctx, t, T, V) ctx.prec = wpinitial return n+n1+1 @defun_wrapped def backlunds(ctx, t): r""" Computes the function `S(t) = \operatorname{arg} \zeta(\frac{1}{2} + it) / \pi`. See Titchmarsh Section 9.3 for details of the definition. **Examples** >>> from mpmath import * >>> mp.dps = 15; mp.pretty = True >>> backlunds(217.3) 0.16302205431184 Generally, the value is a small number. At Gram points it is an integer, frequently equal to 0:: >>> chop(backlunds(grampoint(200))) 0.0 >>> backlunds(extraprec(10)(grampoint)(211)) 1.0 >>> backlunds(extraprec(10)(grampoint)(232)) -1.0 The number of zeros of the Riemann zeta function up to height `t` satisfies `N(t) = \theta(t)/\pi + 1 + S(t)` (see :func:nzeros` and :func:`siegeltheta`):: >>> t = 1234.55 >>> nzeros(t) 842 >>> siegeltheta(t)/pi+1+backlunds(t) 842.0 """ return ctx.nzeros(t)-1-ctx.siegeltheta(t)/ctx.pi """ _ROSSER_EXCEPTIONS is a list of all exceptions to Rosser's rule for n <= 400 000 000. Alternately the entry is of type [n,m], or a string. The string is the zero pattern of the Block and the relevant adjacent. For example (010)3 corresponds to a block composed of three Gram intervals, the first ant third without a zero and the intermediate with a zero. The next Gram interval contain three zeros. So that in total we have 4 zeros in 4 Gram blocks. n and m are the indices of the Gram points of this interval of four Gram intervals. The Rosser exception is therefore formed by the three Gram intervals that are signaled between parenthesis. We have included also some Rosser's exceptions beyond n=400 000 000 that are noted in the literature by some reason. The list is composed from the data published in the references: R. P. Brent, J. van de Lune, H. J. J. te Riele, D. T. Winter, 'On the Zeros of the Riemann Zeta Function in the Critical Strip. II', Math. Comp. 39 (1982) 681--688. See also Corrigenda in Math. Comp. 46 (1986) 771. J. van de Lune, H. J. J. te Riele, 'On the Zeros of the Riemann Zeta Function in the Critical Strip. III', Math. Comp. 41 (1983) 759--767. See also Corrigenda in Math. Comp. 46 (1986) 771. J. van de Lune, 'Sums of Equal Powers of Positive Integers', Dissertation, Vrije Universiteit te Amsterdam, Centrum voor Wiskunde en Informatica, Amsterdam, 1984. Thanks to the authors all this papers and those others that have contributed to make this possible. """ _ROSSER_EXCEPTIONS = \ [[13999525, 13999528], '(00)3', [30783329, 30783332], '(00)3', [30930926, 30930929], '3(00)', [37592215, 37592218], '(00)3', [40870156, 40870159], '(00)3', [43628107, 43628110], '(00)3', [46082042, 46082045], '(00)3', [46875667, 46875670], '(00)3', [49624540, 49624543], '3(00)', [50799238, 50799241], '(00)3', [55221453, 55221456], '3(00)', [56948779, 56948782], '3(00)', [60515663, 60515666], '(00)3', [61331766, 61331770], '(00)40', [69784843, 69784846], '3(00)', [75052114, 75052117], '(00)3', [79545240, 79545243], '3(00)', [79652247, 79652250], '3(00)', [83088043, 83088046], '(00)3', [83689522, 83689525], '3(00)', [85348958, 85348961], '(00)3', [86513820, 86513823], '(00)3', [87947596, 87947599], '3(00)', [88600095, 88600098], '(00)3', [93681183, 93681186], '(00)3', [100316551, 100316554], '3(00)', [100788444, 100788447], '(00)3', [106236172, 106236175], '(00)3', [106941327, 106941330], '3(00)', [107287955, 107287958], '(00)3', [107532016, 107532019], '3(00)', [110571044, 110571047], '(00)3', [111885253, 111885256], '3(00)', [113239783, 113239786], '(00)3', [120159903, 120159906], '(00)3', [121424391, 121424394], '3(00)', [121692931, 121692934], '3(00)', [121934170, 121934173], '3(00)', [122612848, 122612851], '3(00)', [126116567, 126116570], '(00)3', [127936513, 127936516], '(00)3', [128710277, 128710280], '3(00)', [129398902, 129398905], '3(00)', [130461096, 130461099], '3(00)', [131331947, 131331950], '3(00)', [137334071, 137334074], '3(00)', [137832603, 137832606], '(00)3', [138799471, 138799474], '3(00)', [139027791, 139027794], '(00)3', [141617806, 141617809], '(00)3', [144454931, 144454934], '(00)3', [145402379, 145402382], '3(00)', [146130245, 146130248], '3(00)', [147059770, 147059773], '(00)3', [147896099, 147896102], '3(00)', [151097113, 151097116], '(00)3', [152539438, 152539441], '(00)3', [152863168, 152863171], '3(00)', [153522726, 153522729], '3(00)', [155171524, 155171527], '3(00)', [155366607, 155366610], '(00)3', [157260686, 157260689], '3(00)', [157269224, 157269227], '(00)3', [157755123, 157755126], '(00)3', [158298484, 158298487], '3(00)', [160369050, 160369053], '3(00)', [162962787, 162962790], '(00)3', [163724709, 163724712], '(00)3', [164198113, 164198116], '3(00)', [164689301, 164689305], '(00)40', [164880228, 164880231], '3(00)', [166201932, 166201935], '(00)3', [168573836, 168573839], '(00)3', [169750763, 169750766], '(00)3', [170375507, 170375510], '(00)3', [170704879, 170704882], '3(00)', [172000992, 172000995], '3(00)', [173289941, 173289944], '(00)3', [173737613, 173737616], '3(00)', [174102513, 174102516], '(00)3', [174284990, 174284993], '(00)3', [174500513, 174500516], '(00)3', [175710609, 175710612], '(00)3', [176870843, 176870846], '3(00)', [177332732, 177332735], '3(00)', [177902861, 177902864], '3(00)', [179979095, 179979098], '(00)3', [181233726, 181233729], '3(00)', [181625435, 181625438], '(00)3', [182105255, 182105259], '22(00)', [182223559, 182223562], '3(00)', [191116404, 191116407], '3(00)', [191165599, 191165602], '3(00)', [191297535, 191297539], '(00)22', [192485616, 192485619], '(00)3', [193264634, 193264638], '22(00)', [194696968, 194696971], '(00)3', [195876805, 195876808], '(00)3', [195916548, 195916551], '3(00)', [196395160, 196395163], '3(00)', [196676303, 196676306], '(00)3', [197889882, 197889885], '3(00)', [198014122, 198014125], '(00)3', [199235289, 199235292], '(00)3', [201007375, 201007378], '(00)3', [201030605, 201030608], '3(00)', [201184290, 201184293], '3(00)', [201685414, 201685418], '(00)22', [202762875, 202762878], '3(00)', [202860957, 202860960], '3(00)', [203832577, 203832580], '3(00)', [205880544, 205880547], '(00)3', [206357111, 206357114], '(00)3', [207159767, 207159770], '3(00)', [207167343, 207167346], '3(00)', [207482539, 207482543], '3(010)', [207669540, 207669543], '3(00)', [208053426, 208053429], '(00)3', [208110027, 208110030], '3(00)', [209513826, 209513829], '3(00)', [212623522, 212623525], '(00)3', [213841715, 213841718], '(00)3', [214012333, 214012336], '(00)3', [214073567, 214073570], '(00)3', [215170600, 215170603], '3(00)', [215881039, 215881042], '3(00)', [216274604, 216274607], '3(00)', [216957120, 216957123], '3(00)', [217323208, 217323211], '(00)3', [218799264, 218799267], '(00)3', [218803557, 218803560], '3(00)', [219735146, 219735149], '(00)3', [219830062, 219830065], '3(00)', [219897904, 219897907], '(00)3', [221205545, 221205548], '(00)3', [223601929, 223601932], '(00)3', [223907076, 223907079], '3(00)', [223970397, 223970400], '(00)3', [224874044, 224874048], '22(00)', [225291157, 225291160], '(00)3', [227481734, 227481737], '(00)3', [228006442, 228006445], '3(00)', [228357900, 228357903], '(00)3', [228386399, 228386402], '(00)3', [228907446, 228907449], '(00)3', [228984552, 228984555], '3(00)', [229140285, 229140288], '3(00)', [231810024, 231810027], '(00)3', [232838062, 232838065], '3(00)', [234389088, 234389091], '3(00)', [235588194, 235588197], '(00)3', [236645695, 236645698], '(00)3', [236962876, 236962879], '3(00)', [237516723, 237516727], '04(00)', [240004911, 240004914], '(00)3', [240221306, 240221309], '3(00)', [241389213, 241389217], '(010)3', [241549003, 241549006], '(00)3', [241729717, 241729720], '(00)3', [241743684, 241743687], '3(00)', [243780200, 243780203], '3(00)', [243801317, 243801320], '(00)3', [244122072, 244122075], '(00)3', [244691224, 244691227], '3(00)', [244841577, 244841580], '(00)3', [245813461, 245813464], '(00)3', [246299475, 246299478], '(00)3', [246450176, 246450179], '3(00)', [249069349, 249069352], '(00)3', [250076378, 250076381], '(00)3', [252442157, 252442160], '3(00)', [252904231, 252904234], '3(00)', [255145220, 255145223], '(00)3', [255285971, 255285974], '3(00)', [256713230, 256713233], '(00)3', [257992082, 257992085], '(00)3', [258447955, 258447959], '22(00)', [259298045, 259298048], '3(00)', [262141503, 262141506], '(00)3', [263681743, 263681746], '3(00)', [266527881, 266527885], '(010)3', [266617122, 266617125], '(00)3', [266628044, 266628047], '3(00)', [267305763, 267305766], '(00)3', [267388404, 267388407], '3(00)', [267441672, 267441675], '3(00)', [267464886, 267464889], '(00)3', [267554907, 267554910], '3(00)', [269787480, 269787483], '(00)3', [270881434, 270881437], '(00)3', [270997583, 270997586], '3(00)', [272096378, 272096381], '3(00)', [272583009, 272583012], '(00)3', [274190881, 274190884], '3(00)', [274268747, 274268750], '(00)3', [275297429, 275297432], '3(00)', [275545476, 275545479], '3(00)', [275898479, 275898482], '3(00)', [275953000, 275953003], '(00)3', [277117197, 277117201], '(00)22', [277447310, 277447313], '3(00)', [279059657, 279059660], '3(00)', [279259144, 279259147], '3(00)', [279513636, 279513639], '3(00)', [279849069, 279849072], '3(00)', [280291419, 280291422], '(00)3', [281449425, 281449428], '3(00)', [281507953, 281507956], '3(00)', [281825600, 281825603], '(00)3', [282547093, 282547096], '3(00)', [283120963, 283120966], '3(00)', [283323493, 283323496], '(00)3', [284764535, 284764538], '3(00)', [286172639, 286172642], '3(00)', [286688824, 286688827], '(00)3', [287222172, 287222175], '3(00)', [287235534, 287235537], '3(00)', [287304861, 287304864], '3(00)', [287433571, 287433574], '(00)3', [287823551, 287823554], '(00)3', [287872422, 287872425], '3(00)', [288766615, 288766618], '3(00)', [290122963, 290122966], '3(00)', [290450849, 290450853], '(00)22', [291426141, 291426144], '3(00)', [292810353, 292810356], '3(00)', [293109861, 293109864], '3(00)', [293398054, 293398057], '3(00)', [294134426, 294134429], '3(00)', [294216438, 294216441], '(00)3', [295367141, 295367144], '3(00)', [297834111, 297834114], '3(00)', [299099969, 299099972], '3(00)', [300746958, 300746961], '3(00)', [301097423, 301097426], '(00)3', [301834209, 301834212], '(00)3', [302554791, 302554794], '(00)3', [303497445, 303497448], '3(00)', [304165344, 304165347], '3(00)', [304790218, 304790222], '3(010)', [305302352, 305302355], '(00)3', [306785996, 306785999], '3(00)', [307051443, 307051446], '3(00)', [307481539, 307481542], '3(00)', [308605569, 308605572], '3(00)', [309237610, 309237613], '3(00)', [310509287, 310509290], '(00)3', [310554057, 310554060], '3(00)', [310646345, 310646348], '3(00)', [311274896, 311274899], '(00)3', [311894272, 311894275], '3(00)', [312269470, 312269473], '(00)3', [312306601, 312306605], '(00)40', [312683193, 312683196], '3(00)', [314499804, 314499807], '3(00)', [314636802, 314636805], '(00)3', [314689897, 314689900], '3(00)', [314721319, 314721322], '3(00)', [316132890, 316132893], '3(00)', [316217470, 316217474], '(010)3', [316465705, 316465708], '3(00)', [316542790, 316542793], '(00)3', [320822347, 320822350], '3(00)', [321733242, 321733245], '3(00)', [324413970, 324413973], '(00)3', [325950140, 325950143], '(00)3', [326675884, 326675887], '(00)3', [326704208, 326704211], '3(00)', [327596247, 327596250], '3(00)', [328123172, 328123175], '3(00)', [328182212, 328182215], '(00)3', [328257498, 328257501], '3(00)', [328315836, 328315839], '(00)3', [328800974, 328800977], '(00)3', [328998509, 328998512], '3(00)', [329725370, 329725373], '(00)3', [332080601, 332080604], '(00)3', [332221246, 332221249], '(00)3', [332299899, 332299902], '(00)3', [332532822, 332532825], '(00)3', [333334544, 333334548], '(00)22', [333881266, 333881269], '3(00)', [334703267, 334703270], '3(00)', [334875138, 334875141], '3(00)', [336531451, 336531454], '3(00)', [336825907, 336825910], '(00)3', [336993167, 336993170], '(00)3', [337493998, 337494001], '3(00)', [337861034, 337861037], '3(00)', [337899191, 337899194], '(00)3', [337958123, 337958126], '(00)3', [342331982, 342331985], '3(00)', [342676068, 342676071], '3(00)', [347063781, 347063784], '3(00)', [347697348, 347697351], '3(00)', [347954319, 347954322], '3(00)', [348162775, 348162778], '3(00)', [349210702, 349210705], '(00)3', [349212913, 349212916], '3(00)', [349248650, 349248653], '(00)3', [349913500, 349913503], '3(00)', [350891529, 350891532], '3(00)', [351089323, 351089326], '3(00)', [351826158, 351826161], '3(00)', [352228580, 352228583], '(00)3', [352376244, 352376247], '3(00)', [352853758, 352853761], '(00)3', [355110439, 355110442], '(00)3', [355808090, 355808094], '(00)40', [355941556, 355941559], '3(00)', [356360231, 356360234], '(00)3', [356586657, 356586660], '3(00)', [356892926, 356892929], '(00)3', [356908232, 356908235], '3(00)', [357912730, 357912733], '3(00)', [358120344, 358120347], '3(00)', [359044096, 359044099], '(00)3', [360819357, 360819360], '3(00)', [361399662, 361399666], '(010)3', [362361315, 362361318], '(00)3', [363610112, 363610115], '(00)3', [363964804, 363964807], '3(00)', [364527375, 364527378], '(00)3', [365090327, 365090330], '(00)3', [365414539, 365414542], '3(00)', [366738474, 366738477], '3(00)', [368714778, 368714783], '04(010)', [368831545, 368831548], '(00)3', [368902387, 368902390], '(00)3', [370109769, 370109772], '3(00)', [370963333, 370963336], '3(00)', [372541136, 372541140], '3(010)', [372681562, 372681565], '(00)3', [373009410, 373009413], '(00)3', [373458970, 373458973], '3(00)', [375648658, 375648661], '3(00)', [376834728, 376834731], '3(00)', [377119945, 377119948], '(00)3', [377335703, 377335706], '(00)3', [378091745, 378091748], '3(00)', [379139522, 379139525], '3(00)', [380279160, 380279163], '(00)3', [380619442, 380619445], '3(00)', [381244231, 381244234], '3(00)', [382327446, 382327450], '(010)3', [382357073, 382357076], '3(00)', [383545479, 383545482], '3(00)', [384363766, 384363769], '(00)3', [384401786, 384401790], '22(00)', [385198212, 385198215], '3(00)', [385824476, 385824479], '(00)3', [385908194, 385908197], '3(00)', [386946806, 386946809], '3(00)', [387592175, 387592179], '22(00)', [388329293, 388329296], '(00)3', [388679566, 388679569], '3(00)', [388832142, 388832145], '3(00)', [390087103, 390087106], '(00)3', [390190926, 390190930], '(00)22', [390331207, 390331210], '3(00)', [391674495, 391674498], '3(00)', [391937831, 391937834], '3(00)', [391951632, 391951636], '(00)22', [392963986, 392963989], '(00)3', [393007921, 393007924], '3(00)', [393373210, 393373213], '3(00)', [393759572, 393759575], '(00)3', [394036662, 394036665], '(00)3', [395813866, 395813869], '(00)3', [395956690, 395956693], '3(00)', [396031670, 396031673], '3(00)', [397076433, 397076436], '3(00)', [397470601, 397470604], '3(00)', [398289458, 398289461], '3(00)', # [368714778, 368714783], '04(010)', [437953499, 437953504], '04(010)', [526196233, 526196238], '032(00)', [744719566, 744719571], '(010)40', [750375857, 750375862], '032(00)', [958241932, 958241937], '04(010)', [983377342, 983377347], '(00)410', [1003780080, 1003780085], '04(010)', [1070232754, 1070232759], '(00)230', [1209834865, 1209834870], '032(00)', [1257209100, 1257209105], '(00)410', [1368002233, 1368002238], '(00)230' ]