#from mpmath.calculus import ODE_step_euler, ODE_step_rk4, odeint, arange from mpmath import odefun, cos, sin, mpf, sinc, mp ''' solvers = [ODE_step_euler, ODE_step_rk4] def test_ode1(): """ Let's solve: x'' + w**2 * x = 0 i.e. x1 = x, x2 = x1': x1' = x2 x2' = -x1 """ def derivs((x1, x2), t): return x2, -x1 for solver in solvers: t = arange(0, 3.1415926, 0.005) sol = odeint(derivs, (0., 1.), t, solver) x1 = [a[0] for a in sol] x2 = [a[1] for a in sol] # the result is x1 = sin(t), x2 = cos(t) # let's just check the end points for t = pi assert abs(x1[-1]) < 1e-2 assert abs(x2[-1] - (-1)) < 1e-2 def test_ode2(): """ Let's solve: x' - x = 0 i.e. x = exp(x) """ def derivs((x), t): return x for solver in solvers: t = arange(0, 1, 1e-3) sol = odeint(derivs, (1.,), t, solver) x = [a[0] for a in sol] # the result is x = exp(t) # let's just check the end point for t = 1, i.e. x = e assert abs(x[-1] - 2.718281828) < 1e-2 ''' def test_odefun_rational(): mp.dps = 15 # A rational function f = lambda t: 1/(1+mpf(t)**2) g = odefun(lambda x, y: [-2*x*y[0]**2], 0, [f(0)]) assert f(2).ae(g(2)[0]) def test_odefun_sinc_large(): mp.dps = 15 # Sinc function; test for large x f = sinc g = odefun(lambda x, y: [(cos(x)-y[0])/x], 1, [f(1)], tol=0.01, degree=5) assert abs(f(100) - g(100)[0])/f(100) < 0.01 def test_odefun_harmonic(): mp.dps = 15 # Harmonic oscillator f = odefun(lambda x, y: [-y[1], y[0]], 0, [1, 0]) for x in [0, 1, 2.5, 8, 3.7]: # we go back to 3.7 to check caching c, s = f(x) assert c.ae(cos(x)) assert s.ae(sin(x))