"""Wrapper for augmenting observations by pixel values.""" import collections import copy from collections.abc import MutableMapping from typing import Any, Dict, List, Optional, Tuple import numpy as np import gym from gym import spaces STATE_KEY = "state" class PixelObservationWrapper(gym.ObservationWrapper): """Augment observations by pixel values. Observations of this wrapper will be dictionaries of images. You can also choose to add the observation of the base environment to this dictionary. In that case, if the base environment has an observation space of type :class:`Dict`, the dictionary of rendered images will be updated with the base environment's observation. If, however, the observation space is of type :class:`Box`, the base environment's observation (which will be an element of the :class:`Box` space) will be added to the dictionary under the key "state". Example: >>> import gym >>> env = PixelObservationWrapper(gym.make('CarRacing-v1', render_mode="rgb_array")) >>> obs = env.reset() >>> obs.keys() odict_keys(['pixels']) >>> obs['pixels'].shape (400, 600, 3) >>> env = PixelObservationWrapper(gym.make('CarRacing-v1', render_mode="rgb_array"), pixels_only=False) >>> obs = env.reset() >>> obs.keys() odict_keys(['state', 'pixels']) >>> obs['state'].shape (96, 96, 3) >>> obs['pixels'].shape (400, 600, 3) >>> env = PixelObservationWrapper(gym.make('CarRacing-v1', render_mode="rgb_array"), pixel_keys=('obs',)) >>> obs = env.reset() >>> obs.keys() odict_keys(['obs']) >>> obs['obs'].shape (400, 600, 3) """ def __init__( self, env: gym.Env, pixels_only: bool = True, render_kwargs: Optional[Dict[str, Dict[str, Any]]] = None, pixel_keys: Tuple[str, ...] = ("pixels",), ): """Initializes a new pixel Wrapper. Args: env: The environment to wrap. pixels_only (bool): If ``True`` (default), the original observation returned by the wrapped environment will be discarded, and a dictionary observation will only include pixels. If ``False``, the observation dictionary will contain both the original observations and the pixel observations. render_kwargs (dict): Optional dictionary containing that maps elements of ``pixel_keys``to keyword arguments passed to the :meth:`self.render` method. pixel_keys: Optional custom string specifying the pixel observation's key in the ``OrderedDict`` of observations. Defaults to ``(pixels,)``. Raises: AssertionError: If any of the keys in ``render_kwargs``do not show up in ``pixel_keys``. ValueError: If ``env``'s observation space is not compatible with the wrapper. Supported formats are a single array, or a dict of arrays. ValueError: If ``env``'s observation already contains any of the specified ``pixel_keys``. TypeError: When an unexpected pixel type is used """ super().__init__(env) # Avoid side-effects that occur when render_kwargs is manipulated render_kwargs = copy.deepcopy(render_kwargs) self.render_history = [] if render_kwargs is None: render_kwargs = {} for key in render_kwargs: assert key in pixel_keys, ( "The argument render_kwargs should map elements of " "pixel_keys to dictionaries of keyword arguments. " f"Found key '{key}' in render_kwargs but not in pixel_keys." ) default_render_kwargs = {} if not env.render_mode: raise AttributeError( "env.render_mode must be specified to use PixelObservationWrapper:" "`gym.make(env_name, render_mode='rgb_array')`." ) for key in pixel_keys: render_kwargs.setdefault(key, default_render_kwargs) wrapped_observation_space = env.observation_space if isinstance(wrapped_observation_space, spaces.Box): self._observation_is_dict = False invalid_keys = {STATE_KEY} elif isinstance(wrapped_observation_space, (spaces.Dict, MutableMapping)): self._observation_is_dict = True invalid_keys = set(wrapped_observation_space.spaces.keys()) else: raise ValueError("Unsupported observation space structure.") if not pixels_only: # Make sure that now keys in the `pixel_keys` overlap with # `observation_keys` overlapping_keys = set(pixel_keys) & set(invalid_keys) if overlapping_keys: raise ValueError( f"Duplicate or reserved pixel keys {overlapping_keys!r}." ) if pixels_only: self.observation_space = spaces.Dict() elif self._observation_is_dict: self.observation_space = copy.deepcopy(wrapped_observation_space) else: self.observation_space = spaces.Dict({STATE_KEY: wrapped_observation_space}) # Extend observation space with pixels. self.env.reset() pixels_spaces = {} for pixel_key in pixel_keys: pixels = self._render(**render_kwargs[pixel_key]) pixels: np.ndarray = pixels[-1] if isinstance(pixels, List) else pixels if not hasattr(pixels, "dtype") or not hasattr(pixels, "shape"): raise TypeError( f"Render method returns a {pixels.__class__.__name__}, but an array with dtype and shape is expected." "Be sure to specify the correct render_mode." ) if np.issubdtype(pixels.dtype, np.integer): low, high = (0, 255) elif np.issubdtype(pixels.dtype, np.float): low, high = (-float("inf"), float("inf")) else: raise TypeError(pixels.dtype) pixels_space = spaces.Box( shape=pixels.shape, low=low, high=high, dtype=pixels.dtype ) pixels_spaces[pixel_key] = pixels_space self.observation_space.spaces.update(pixels_spaces) self._pixels_only = pixels_only self._render_kwargs = render_kwargs self._pixel_keys = pixel_keys def observation(self, observation): """Updates the observations with the pixel observations. Args: observation: The observation to add pixel observations for Returns: The updated pixel observations """ pixel_observation = self._add_pixel_observation(observation) return pixel_observation def _add_pixel_observation(self, wrapped_observation): if self._pixels_only: observation = collections.OrderedDict() elif self._observation_is_dict: observation = type(wrapped_observation)(wrapped_observation) else: observation = collections.OrderedDict() observation[STATE_KEY] = wrapped_observation pixel_observations = { pixel_key: self._render(**self._render_kwargs[pixel_key]) for pixel_key in self._pixel_keys } observation.update(pixel_observations) return observation def render(self, *args, **kwargs): """Renders the environment.""" render = self.env.render(*args, **kwargs) if isinstance(render, list): render = self.render_history + render self.render_history = [] return render def _render(self, *args, **kwargs): render = self.env.render(*args, **kwargs) if isinstance(render, list): self.render_history += render return render