Spaces:
Running
Running
File size: 31,175 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
__credits__ = ["Andrea PIERRÉ"]
import math
from typing import TYPE_CHECKING, List, Optional
import numpy as np
import gym
from gym import error, spaces
from gym.error import DependencyNotInstalled
from gym.utils import EzPickle
try:
import Box2D
from Box2D.b2 import (
circleShape,
contactListener,
edgeShape,
fixtureDef,
polygonShape,
revoluteJointDef,
)
except ImportError:
raise DependencyNotInstalled("box2D is not installed, run `pip install gym[box2d]`")
if TYPE_CHECKING:
import pygame
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MOTORS_TORQUE = 80
SPEED_HIP = 4
SPEED_KNEE = 6
LIDAR_RANGE = 160 / SCALE
INITIAL_RANDOM = 5
HULL_POLY = [(-30, +9), (+6, +9), (+34, +1), (+34, -8), (-30, -8)]
LEG_DOWN = -8 / SCALE
LEG_W, LEG_H = 8 / SCALE, 34 / SCALE
VIEWPORT_W = 600
VIEWPORT_H = 400
TERRAIN_STEP = 14 / SCALE
TERRAIN_LENGTH = 200 # in steps
TERRAIN_HEIGHT = VIEWPORT_H / SCALE / 4
TERRAIN_GRASS = 10 # low long are grass spots, in steps
TERRAIN_STARTPAD = 20 # in steps
FRICTION = 2.5
HULL_FD = fixtureDef(
shape=polygonShape(vertices=[(x / SCALE, y / SCALE) for x, y in HULL_POLY]),
density=5.0,
friction=0.1,
categoryBits=0x0020,
maskBits=0x001, # collide only with ground
restitution=0.0,
) # 0.99 bouncy
LEG_FD = fixtureDef(
shape=polygonShape(box=(LEG_W / 2, LEG_H / 2)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
)
LOWER_FD = fixtureDef(
shape=polygonShape(box=(0.8 * LEG_W / 2, LEG_H / 2)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001,
)
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
if (
self.env.hull == contact.fixtureA.body
or self.env.hull == contact.fixtureB.body
):
self.env.game_over = True
for leg in [self.env.legs[1], self.env.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = True
def EndContact(self, contact):
for leg in [self.env.legs[1], self.env.legs[3]]:
if leg in [contact.fixtureA.body, contact.fixtureB.body]:
leg.ground_contact = False
class BipedalWalker(gym.Env, EzPickle):
"""
### Description
This is a simple 4-joint walker robot environment.
There are two versions:
- Normal, with slightly uneven terrain.
- Hardcore, with ladders, stumps, pitfalls.
To solve the normal version, you need to get 300 points in 1600 time steps.
To solve the hardcore version, you need 300 points in 2000 time steps.
A heuristic is provided for testing. It's also useful to get demonstrations
to learn from. To run the heuristic:
```
python gym/envs/box2d/bipedal_walker.py
```
### Action Space
Actions are motor speed values in the [-1, 1] range for each of the
4 joints at both hips and knees.
### Observation Space
State consists of hull angle speed, angular velocity, horizontal speed,
vertical speed, position of joints and joints angular speed, legs contact
with ground, and 10 lidar rangefinder measurements. There are no coordinates
in the state vector.
### Rewards
Reward is given for moving forward, totaling 300+ points up to the far end.
If the robot falls, it gets -100. Applying motor torque costs a small
amount of points. A more optimal agent will get a better score.
### Starting State
The walker starts standing at the left end of the terrain with the hull
horizontal, and both legs in the same position with a slight knee angle.
### Episode Termination
The episode will terminate if the hull gets in contact with the ground or
if the walker exceeds the right end of the terrain length.
### Arguments
To use to the _hardcore_ environment, you need to specify the
`hardcore=True` argument like below:
```python
import gym
env = gym.make("BipedalWalker-v3", hardcore=True)
```
### Version History
- v3: returns closest lidar trace instead of furthest;
faster video recording
- v2: Count energy spent
- v1: Legs now report contact with ground; motors have higher torque and
speed; ground has higher friction; lidar rendered less nervously.
- v0: Initial version
<!-- ### References -->
### Credits
Created by Oleg Klimov
"""
metadata = {
"render_modes": ["human", "rgb_array"],
"render_fps": FPS,
}
def __init__(self, render_mode: Optional[str] = None, hardcore: bool = False):
EzPickle.__init__(self, render_mode, hardcore)
self.isopen = True
self.world = Box2D.b2World()
self.terrain: List[Box2D.b2Body] = []
self.hull: Optional[Box2D.b2Body] = None
self.prev_shaping = None
self.hardcore = hardcore
self.fd_polygon = fixtureDef(
shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)]),
friction=FRICTION,
)
self.fd_edge = fixtureDef(
shape=edgeShape(vertices=[(0, 0), (1, 1)]),
friction=FRICTION,
categoryBits=0x0001,
)
# we use 5.0 to represent the joints moving at maximum
# 5 x the rated speed due to impulses from ground contact etc.
low = np.array(
[
-math.pi,
-5.0,
-5.0,
-5.0,
-math.pi,
-5.0,
-math.pi,
-5.0,
-0.0,
-math.pi,
-5.0,
-math.pi,
-5.0,
-0.0,
]
+ [-1.0] * 10
).astype(np.float32)
high = np.array(
[
math.pi,
5.0,
5.0,
5.0,
math.pi,
5.0,
math.pi,
5.0,
5.0,
math.pi,
5.0,
math.pi,
5.0,
5.0,
]
+ [1.0] * 10
).astype(np.float32)
self.action_space = spaces.Box(
np.array([-1, -1, -1, -1]).astype(np.float32),
np.array([1, 1, 1, 1]).astype(np.float32),
)
self.observation_space = spaces.Box(low, high)
# state = [
# self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible.
# 2.0 * self.hull.angularVelocity / FPS,
# 0.3 * vel.x * (VIEWPORT_W / SCALE) / FPS, # Normalized to get -1..1 range
# 0.3 * vel.y * (VIEWPORT_H / SCALE) / FPS,
# self.joints[
# 0
# ].angle, # This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too)
# self.joints[0].speed / SPEED_HIP,
# self.joints[1].angle + 1.0,
# self.joints[1].speed / SPEED_KNEE,
# 1.0 if self.legs[1].ground_contact else 0.0,
# self.joints[2].angle,
# self.joints[2].speed / SPEED_HIP,
# self.joints[3].angle + 1.0,
# self.joints[3].speed / SPEED_KNEE,
# 1.0 if self.legs[3].ground_contact else 0.0,
# ]
# state += [l.fraction for l in self.lidar]
self.render_mode = render_mode
self.screen: Optional[pygame.Surface] = None
self.clock = None
def _destroy(self):
if not self.terrain:
return
self.world.contactListener = None
for t in self.terrain:
self.world.DestroyBody(t)
self.terrain = []
self.world.DestroyBody(self.hull)
self.hull = None
for leg in self.legs:
self.world.DestroyBody(leg)
self.legs = []
self.joints = []
def _generate_terrain(self, hardcore):
GRASS, STUMP, STAIRS, PIT, _STATES_ = range(5)
state = GRASS
velocity = 0.0
y = TERRAIN_HEIGHT
counter = TERRAIN_STARTPAD
oneshot = False
self.terrain = []
self.terrain_x = []
self.terrain_y = []
stair_steps, stair_width, stair_height = 0, 0, 0
original_y = 0
for i in range(TERRAIN_LENGTH):
x = i * TERRAIN_STEP
self.terrain_x.append(x)
if state == GRASS and not oneshot:
velocity = 0.8 * velocity + 0.01 * np.sign(TERRAIN_HEIGHT - y)
if i > TERRAIN_STARTPAD:
velocity += self.np_random.uniform(-1, 1) / SCALE # 1
y += velocity
elif state == PIT and oneshot:
counter = self.np_random.integers(3, 5)
poly = [
(x, y),
(x + TERRAIN_STEP, y),
(x + TERRAIN_STEP, y - 4 * TERRAIN_STEP),
(x, y - 4 * TERRAIN_STEP),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (255, 255, 255), (153, 153, 153)
self.terrain.append(t)
self.fd_polygon.shape.vertices = [
(p[0] + TERRAIN_STEP * counter, p[1]) for p in poly
]
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (255, 255, 255), (153, 153, 153)
self.terrain.append(t)
counter += 2
original_y = y
elif state == PIT and not oneshot:
y = original_y
if counter > 1:
y -= 4 * TERRAIN_STEP
elif state == STUMP and oneshot:
counter = self.np_random.integers(1, 3)
poly = [
(x, y),
(x + counter * TERRAIN_STEP, y),
(x + counter * TERRAIN_STEP, y + counter * TERRAIN_STEP),
(x, y + counter * TERRAIN_STEP),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (255, 255, 255), (153, 153, 153)
self.terrain.append(t)
elif state == STAIRS and oneshot:
stair_height = +1 if self.np_random.random() > 0.5 else -1
stair_width = self.np_random.integers(4, 5)
stair_steps = self.np_random.integers(3, 5)
original_y = y
for s in range(stair_steps):
poly = [
(
x + (s * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP,
),
(
x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (s * stair_height) * TERRAIN_STEP,
),
(
x + ((1 + s) * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP,
),
(
x + (s * stair_width) * TERRAIN_STEP,
y + (-1 + s * stair_height) * TERRAIN_STEP,
),
]
self.fd_polygon.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_polygon)
t.color1, t.color2 = (255, 255, 255), (153, 153, 153)
self.terrain.append(t)
counter = stair_steps * stair_width
elif state == STAIRS and not oneshot:
s = stair_steps * stair_width - counter - stair_height
n = s / stair_width
y = original_y + (n * stair_height) * TERRAIN_STEP
oneshot = False
self.terrain_y.append(y)
counter -= 1
if counter == 0:
counter = self.np_random.integers(TERRAIN_GRASS / 2, TERRAIN_GRASS)
if state == GRASS and hardcore:
state = self.np_random.integers(1, _STATES_)
oneshot = True
else:
state = GRASS
oneshot = True
self.terrain_poly = []
for i in range(TERRAIN_LENGTH - 1):
poly = [
(self.terrain_x[i], self.terrain_y[i]),
(self.terrain_x[i + 1], self.terrain_y[i + 1]),
]
self.fd_edge.shape.vertices = poly
t = self.world.CreateStaticBody(fixtures=self.fd_edge)
color = (76, 255 if i % 2 == 0 else 204, 76)
t.color1 = color
t.color2 = color
self.terrain.append(t)
color = (102, 153, 76)
poly += [(poly[1][0], 0), (poly[0][0], 0)]
self.terrain_poly.append((poly, color))
self.terrain.reverse()
def _generate_clouds(self):
# Sorry for the clouds, couldn't resist
self.cloud_poly = []
for i in range(TERRAIN_LENGTH // 20):
x = self.np_random.uniform(0, TERRAIN_LENGTH) * TERRAIN_STEP
y = VIEWPORT_H / SCALE * 3 / 4
poly = [
(
x
+ 15 * TERRAIN_STEP * math.sin(3.14 * 2 * a / 5)
+ self.np_random.uniform(0, 5 * TERRAIN_STEP),
y
+ 5 * TERRAIN_STEP * math.cos(3.14 * 2 * a / 5)
+ self.np_random.uniform(0, 5 * TERRAIN_STEP),
)
for a in range(5)
]
x1 = min(p[0] for p in poly)
x2 = max(p[0] for p in poly)
self.cloud_poly.append((poly, x1, x2))
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
):
super().reset(seed=seed)
self._destroy()
self.world.contactListener_bug_workaround = ContactDetector(self)
self.world.contactListener = self.world.contactListener_bug_workaround
self.game_over = False
self.prev_shaping = None
self.scroll = 0.0
self.lidar_render = 0
self._generate_terrain(self.hardcore)
self._generate_clouds()
init_x = TERRAIN_STEP * TERRAIN_STARTPAD / 2
init_y = TERRAIN_HEIGHT + 2 * LEG_H
self.hull = self.world.CreateDynamicBody(
position=(init_x, init_y), fixtures=HULL_FD
)
self.hull.color1 = (127, 51, 229)
self.hull.color2 = (76, 76, 127)
self.hull.ApplyForceToCenter(
(self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM), 0), True
)
self.legs: List[Box2D.b2Body] = []
self.joints: List[Box2D.b2RevoluteJoint] = []
for i in [-1, +1]:
leg = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H / 2 - LEG_DOWN),
angle=(i * 0.05),
fixtures=LEG_FD,
)
leg.color1 = (153 - i * 25, 76 - i * 25, 127 - i * 25)
leg.color2 = (102 - i * 25, 51 - i * 25, 76 - i * 25)
rjd = revoluteJointDef(
bodyA=self.hull,
bodyB=leg,
localAnchorA=(0, LEG_DOWN),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=i,
lowerAngle=-0.8,
upperAngle=1.1,
)
self.legs.append(leg)
self.joints.append(self.world.CreateJoint(rjd))
lower = self.world.CreateDynamicBody(
position=(init_x, init_y - LEG_H * 3 / 2 - LEG_DOWN),
angle=(i * 0.05),
fixtures=LOWER_FD,
)
lower.color1 = (153 - i * 25, 76 - i * 25, 127 - i * 25)
lower.color2 = (102 - i * 25, 51 - i * 25, 76 - i * 25)
rjd = revoluteJointDef(
bodyA=leg,
bodyB=lower,
localAnchorA=(0, -LEG_H / 2),
localAnchorB=(0, LEG_H / 2),
enableMotor=True,
enableLimit=True,
maxMotorTorque=MOTORS_TORQUE,
motorSpeed=1,
lowerAngle=-1.6,
upperAngle=-0.1,
)
lower.ground_contact = False
self.legs.append(lower)
self.joints.append(self.world.CreateJoint(rjd))
self.drawlist = self.terrain + self.legs + [self.hull]
class LidarCallback(Box2D.b2.rayCastCallback):
def ReportFixture(self, fixture, point, normal, fraction):
if (fixture.filterData.categoryBits & 1) == 0:
return -1
self.p2 = point
self.fraction = fraction
return fraction
self.lidar = [LidarCallback() for _ in range(10)]
if self.render_mode == "human":
self.render()
return self.step(np.array([0, 0, 0, 0]))[0], {}
def step(self, action: np.ndarray):
assert self.hull is not None
# self.hull.ApplyForceToCenter((0, 20), True) -- Uncomment this to receive a bit of stability help
control_speed = False # Should be easier as well
if control_speed:
self.joints[0].motorSpeed = float(SPEED_HIP * np.clip(action[0], -1, 1))
self.joints[1].motorSpeed = float(SPEED_KNEE * np.clip(action[1], -1, 1))
self.joints[2].motorSpeed = float(SPEED_HIP * np.clip(action[2], -1, 1))
self.joints[3].motorSpeed = float(SPEED_KNEE * np.clip(action[3], -1, 1))
else:
self.joints[0].motorSpeed = float(SPEED_HIP * np.sign(action[0]))
self.joints[0].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[0]), 0, 1)
)
self.joints[1].motorSpeed = float(SPEED_KNEE * np.sign(action[1]))
self.joints[1].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[1]), 0, 1)
)
self.joints[2].motorSpeed = float(SPEED_HIP * np.sign(action[2]))
self.joints[2].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[2]), 0, 1)
)
self.joints[3].motorSpeed = float(SPEED_KNEE * np.sign(action[3]))
self.joints[3].maxMotorTorque = float(
MOTORS_TORQUE * np.clip(np.abs(action[3]), 0, 1)
)
self.world.Step(1.0 / FPS, 6 * 30, 2 * 30)
pos = self.hull.position
vel = self.hull.linearVelocity
for i in range(10):
self.lidar[i].fraction = 1.0
self.lidar[i].p1 = pos
self.lidar[i].p2 = (
pos[0] + math.sin(1.5 * i / 10.0) * LIDAR_RANGE,
pos[1] - math.cos(1.5 * i / 10.0) * LIDAR_RANGE,
)
self.world.RayCast(self.lidar[i], self.lidar[i].p1, self.lidar[i].p2)
state = [
self.hull.angle, # Normal angles up to 0.5 here, but sure more is possible.
2.0 * self.hull.angularVelocity / FPS,
0.3 * vel.x * (VIEWPORT_W / SCALE) / FPS, # Normalized to get -1..1 range
0.3 * vel.y * (VIEWPORT_H / SCALE) / FPS,
self.joints[0].angle,
# This will give 1.1 on high up, but it's still OK (and there should be spikes on hiting the ground, that's normal too)
self.joints[0].speed / SPEED_HIP,
self.joints[1].angle + 1.0,
self.joints[1].speed / SPEED_KNEE,
1.0 if self.legs[1].ground_contact else 0.0,
self.joints[2].angle,
self.joints[2].speed / SPEED_HIP,
self.joints[3].angle + 1.0,
self.joints[3].speed / SPEED_KNEE,
1.0 if self.legs[3].ground_contact else 0.0,
]
state += [l.fraction for l in self.lidar]
assert len(state) == 24
self.scroll = pos.x - VIEWPORT_W / SCALE / 5
shaping = (
130 * pos[0] / SCALE
) # moving forward is a way to receive reward (normalized to get 300 on completion)
shaping -= 5.0 * abs(
state[0]
) # keep head straight, other than that and falling, any behavior is unpunished
reward = 0
if self.prev_shaping is not None:
reward = shaping - self.prev_shaping
self.prev_shaping = shaping
for a in action:
reward -= 0.00035 * MOTORS_TORQUE * np.clip(np.abs(a), 0, 1)
# normalized to about -50.0 using heuristic, more optimal agent should spend less
terminated = False
if self.game_over or pos[0] < 0:
reward = -100
terminated = True
if pos[0] > (TERRAIN_LENGTH - TERRAIN_GRASS) * TERRAIN_STEP:
terminated = True
if self.render_mode == "human":
self.render()
return np.array(state, dtype=np.float32), reward, terminated, False, {}
def render(self):
if self.render_mode is None:
gym.logger.warn(
"You are calling render method without specifying any render mode. "
"You can specify the render_mode at initialization, "
f'e.g. gym("{self.spec.id}", render_mode="rgb_array")'
)
return
try:
import pygame
from pygame import gfxdraw
except ImportError:
raise DependencyNotInstalled(
"pygame is not installed, run `pip install gym[box2d]`"
)
if self.screen is None and self.render_mode == "human":
pygame.init()
pygame.display.init()
self.screen = pygame.display.set_mode((VIEWPORT_W, VIEWPORT_H))
if self.clock is None:
self.clock = pygame.time.Clock()
self.surf = pygame.Surface(
(VIEWPORT_W + max(0.0, self.scroll) * SCALE, VIEWPORT_H)
)
pygame.transform.scale(self.surf, (SCALE, SCALE))
pygame.draw.polygon(
self.surf,
color=(215, 215, 255),
points=[
(self.scroll * SCALE, 0),
(self.scroll * SCALE + VIEWPORT_W, 0),
(self.scroll * SCALE + VIEWPORT_W, VIEWPORT_H),
(self.scroll * SCALE, VIEWPORT_H),
],
)
for poly, x1, x2 in self.cloud_poly:
if x2 < self.scroll / 2:
continue
if x1 > self.scroll / 2 + VIEWPORT_W / SCALE:
continue
pygame.draw.polygon(
self.surf,
color=(255, 255, 255),
points=[
(p[0] * SCALE + self.scroll * SCALE / 2, p[1] * SCALE) for p in poly
],
)
gfxdraw.aapolygon(
self.surf,
[(p[0] * SCALE + self.scroll * SCALE / 2, p[1] * SCALE) for p in poly],
(255, 255, 255),
)
for poly, color in self.terrain_poly:
if poly[1][0] < self.scroll:
continue
if poly[0][0] > self.scroll + VIEWPORT_W / SCALE:
continue
scaled_poly = []
for coord in poly:
scaled_poly.append([coord[0] * SCALE, coord[1] * SCALE])
pygame.draw.polygon(self.surf, color=color, points=scaled_poly)
gfxdraw.aapolygon(self.surf, scaled_poly, color)
self.lidar_render = (self.lidar_render + 1) % 100
i = self.lidar_render
if i < 2 * len(self.lidar):
single_lidar = (
self.lidar[i]
if i < len(self.lidar)
else self.lidar[len(self.lidar) - i - 1]
)
if hasattr(single_lidar, "p1") and hasattr(single_lidar, "p2"):
pygame.draw.line(
self.surf,
color=(255, 0, 0),
start_pos=(single_lidar.p1[0] * SCALE, single_lidar.p1[1] * SCALE),
end_pos=(single_lidar.p2[0] * SCALE, single_lidar.p2[1] * SCALE),
width=1,
)
for obj in self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
pygame.draw.circle(
self.surf,
color=obj.color1,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
pygame.draw.circle(
self.surf,
color=obj.color2,
center=trans * f.shape.pos * SCALE,
radius=f.shape.radius * SCALE,
)
else:
path = [trans * v * SCALE for v in f.shape.vertices]
if len(path) > 2:
pygame.draw.polygon(self.surf, color=obj.color1, points=path)
gfxdraw.aapolygon(self.surf, path, obj.color1)
path.append(path[0])
pygame.draw.polygon(
self.surf, color=obj.color2, points=path, width=1
)
gfxdraw.aapolygon(self.surf, path, obj.color2)
else:
pygame.draw.aaline(
self.surf,
start_pos=path[0],
end_pos=path[1],
color=obj.color1,
)
flagy1 = TERRAIN_HEIGHT * SCALE
flagy2 = flagy1 + 50
x = TERRAIN_STEP * 3 * SCALE
pygame.draw.aaline(
self.surf, color=(0, 0, 0), start_pos=(x, flagy1), end_pos=(x, flagy2)
)
f = [
(x, flagy2),
(x, flagy2 - 10),
(x + 25, flagy2 - 5),
]
pygame.draw.polygon(self.surf, color=(230, 51, 0), points=f)
pygame.draw.lines(
self.surf, color=(0, 0, 0), points=f + [f[0]], width=1, closed=False
)
self.surf = pygame.transform.flip(self.surf, False, True)
if self.render_mode == "human":
assert self.screen is not None
self.screen.blit(self.surf, (-self.scroll * SCALE, 0))
pygame.event.pump()
self.clock.tick(self.metadata["render_fps"])
pygame.display.flip()
elif self.render_mode == "rgb_array":
return np.transpose(
np.array(pygame.surfarray.pixels3d(self.surf)), axes=(1, 0, 2)
)[:, -VIEWPORT_W:]
def close(self):
if self.screen is not None:
import pygame
pygame.display.quit()
pygame.quit()
self.isopen = False
class BipedalWalkerHardcore:
def __init__(self):
raise error.Error(
"Error initializing BipedalWalkerHardcore Environment.\n"
"Currently, we do not support initializing this mode of environment by calling the class directly.\n"
"To use this environment, instead create it by specifying the hardcore keyword in gym.make, i.e.\n"
'gym.make("BipedalWalker-v3", hardcore=True)'
)
if __name__ == "__main__":
# Heurisic: suboptimal, have no notion of balance.
env = BipedalWalker()
env.reset()
steps = 0
total_reward = 0
a = np.array([0.0, 0.0, 0.0, 0.0])
STAY_ON_ONE_LEG, PUT_OTHER_DOWN, PUSH_OFF = 1, 2, 3
SPEED = 0.29 # Will fall forward on higher speed
state = STAY_ON_ONE_LEG
moving_leg = 0
supporting_leg = 1 - moving_leg
SUPPORT_KNEE_ANGLE = +0.1
supporting_knee_angle = SUPPORT_KNEE_ANGLE
while True:
s, r, terminated, truncated, info = env.step(a)
total_reward += r
if steps % 20 == 0 or terminated or truncated:
print("\naction " + str([f"{x:+0.2f}" for x in a]))
print(f"step {steps} total_reward {total_reward:+0.2f}")
print("hull " + str([f"{x:+0.2f}" for x in s[0:4]]))
print("leg0 " + str([f"{x:+0.2f}" for x in s[4:9]]))
print("leg1 " + str([f"{x:+0.2f}" for x in s[9:14]]))
steps += 1
contact0 = s[8]
contact1 = s[13]
moving_s_base = 4 + 5 * moving_leg
supporting_s_base = 4 + 5 * supporting_leg
hip_targ = [None, None] # -0.8 .. +1.1
knee_targ = [None, None] # -0.6 .. +0.9
hip_todo = [0.0, 0.0]
knee_todo = [0.0, 0.0]
if state == STAY_ON_ONE_LEG:
hip_targ[moving_leg] = 1.1
knee_targ[moving_leg] = -0.6
supporting_knee_angle += 0.03
if s[2] > SPEED:
supporting_knee_angle += 0.03
supporting_knee_angle = min(supporting_knee_angle, SUPPORT_KNEE_ANGLE)
knee_targ[supporting_leg] = supporting_knee_angle
if s[supporting_s_base + 0] < 0.10: # supporting leg is behind
state = PUT_OTHER_DOWN
if state == PUT_OTHER_DOWN:
hip_targ[moving_leg] = +0.1
knee_targ[moving_leg] = SUPPORT_KNEE_ANGLE
knee_targ[supporting_leg] = supporting_knee_angle
if s[moving_s_base + 4]:
state = PUSH_OFF
supporting_knee_angle = min(s[moving_s_base + 2], SUPPORT_KNEE_ANGLE)
if state == PUSH_OFF:
knee_targ[moving_leg] = supporting_knee_angle
knee_targ[supporting_leg] = +1.0
if s[supporting_s_base + 2] > 0.88 or s[2] > 1.2 * SPEED:
state = STAY_ON_ONE_LEG
moving_leg = 1 - moving_leg
supporting_leg = 1 - moving_leg
if hip_targ[0]:
hip_todo[0] = 0.9 * (hip_targ[0] - s[4]) - 0.25 * s[5]
if hip_targ[1]:
hip_todo[1] = 0.9 * (hip_targ[1] - s[9]) - 0.25 * s[10]
if knee_targ[0]:
knee_todo[0] = 4.0 * (knee_targ[0] - s[6]) - 0.25 * s[7]
if knee_targ[1]:
knee_todo[1] = 4.0 * (knee_targ[1] - s[11]) - 0.25 * s[12]
hip_todo[0] -= 0.9 * (0 - s[0]) - 1.5 * s[1] # PID to keep head strait
hip_todo[1] -= 0.9 * (0 - s[0]) - 1.5 * s[1]
knee_todo[0] -= 15.0 * s[3] # vertical speed, to damp oscillations
knee_todo[1] -= 15.0 * s[3]
a[0] = hip_todo[0]
a[1] = knee_todo[0]
a[2] = hip_todo[1]
a[3] = knee_todo[1]
a = np.clip(0.5 * a, -1.0, 1.0)
if terminated or truncated:
break
|