File size: 22,809 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""
Maximum flow (and minimum cut) algorithms on capacitated graphs.
"""
import networkx as nx

from .boykovkolmogorov import boykov_kolmogorov
from .dinitz_alg import dinitz
from .edmondskarp import edmonds_karp
from .preflowpush import preflow_push
from .shortestaugmentingpath import shortest_augmenting_path
from .utils import build_flow_dict

# Define the default flow function for computing maximum flow.
default_flow_func = preflow_push

__all__ = ["maximum_flow", "maximum_flow_value", "minimum_cut", "minimum_cut_value"]


@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")})
def maximum_flow(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs):
    """Find a maximum single-commodity flow.

    Parameters
    ----------
    flowG : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    _s : node
        Source node for the flow.

    _t : node
        Sink node for the flow.

    capacity : string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    flow_func : function
        A function for computing the maximum flow among a pair of nodes
        in a capacitated graph. The function has to accept at least three
        parameters: a Graph or Digraph, a source node, and a target node.
        And return a residual network that follows NetworkX conventions
        (see Notes). If flow_func is None, the default maximum
        flow function (:meth:`preflow_push`) is used. See below for
        alternative algorithms. The choice of the default function may change
        from version to version and should not be relied on. Default value:
        None.

    kwargs : Any other keyword parameter is passed to the function that
        computes the maximum flow.

    Returns
    -------
    flow_value : integer, float
        Value of the maximum flow, i.e., net outflow from the source.

    flow_dict : dict
        A dictionary containing the value of the flow that went through
        each edge.

    Raises
    ------
    NetworkXError
        The algorithm does not support MultiGraph and MultiDiGraph. If
        the input graph is an instance of one of these two classes, a
        NetworkXError is raised.

    NetworkXUnbounded
        If the graph has a path of infinite capacity, the value of a
        feasible flow on the graph is unbounded above and the function
        raises a NetworkXUnbounded.

    See also
    --------
    :meth:`maximum_flow_value`
    :meth:`minimum_cut`
    :meth:`minimum_cut_value`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    Notes
    -----
    The function used in the flow_func parameter has to return a residual
    network that follows NetworkX conventions:

    The residual network :samp:`R` from an input graph :samp:`G` has the
    same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
    of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
    self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
    in :samp:`G`.

    For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
    is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
    in :samp:`G` or zero otherwise. If the capacity is infinite,
    :samp:`R[u][v]['capacity']` will have a high arbitrary finite value
    that does not affect the solution of the problem. This value is stored in
    :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
    :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
    satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.

    The flow value, defined as the total flow into :samp:`t`, the sink, is
    stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using
    only edges :samp:`(u, v)` such that
    :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
    :samp:`s`-:samp:`t` cut.

    Specific algorithms may store extra data in :samp:`R`.

    The function should supports an optional boolean parameter value_only. When
    True, it can optionally terminate the algorithm as soon as the maximum flow
    value and the minimum cut can be determined.

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edge("x", "a", capacity=3.0)
    >>> G.add_edge("x", "b", capacity=1.0)
    >>> G.add_edge("a", "c", capacity=3.0)
    >>> G.add_edge("b", "c", capacity=5.0)
    >>> G.add_edge("b", "d", capacity=4.0)
    >>> G.add_edge("d", "e", capacity=2.0)
    >>> G.add_edge("c", "y", capacity=2.0)
    >>> G.add_edge("e", "y", capacity=3.0)

    maximum_flow returns both the value of the maximum flow and a
    dictionary with all flows.

    >>> flow_value, flow_dict = nx.maximum_flow(G, "x", "y")
    >>> flow_value
    3.0
    >>> print(flow_dict["x"]["b"])
    1.0

    You can also use alternative algorithms for computing the
    maximum flow by using the flow_func parameter.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> flow_value == nx.maximum_flow(G, "x", "y", flow_func=shortest_augmenting_path)[
    ...     0
    ... ]
    True

    """
    if flow_func is None:
        if kwargs:
            raise nx.NetworkXError(
                "You have to explicitly set a flow_func if"
                " you need to pass parameters via kwargs."
            )
        flow_func = default_flow_func

    if not callable(flow_func):
        raise nx.NetworkXError("flow_func has to be callable.")

    R = flow_func(flowG, _s, _t, capacity=capacity, value_only=False, **kwargs)
    flow_dict = build_flow_dict(flowG, R)

    return (R.graph["flow_value"], flow_dict)


@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")})
def maximum_flow_value(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs):
    """Find the value of maximum single-commodity flow.

    Parameters
    ----------
    flowG : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    _s : node
        Source node for the flow.

    _t : node
        Sink node for the flow.

    capacity : string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    flow_func : function
        A function for computing the maximum flow among a pair of nodes
        in a capacitated graph. The function has to accept at least three
        parameters: a Graph or Digraph, a source node, and a target node.
        And return a residual network that follows NetworkX conventions
        (see Notes). If flow_func is None, the default maximum
        flow function (:meth:`preflow_push`) is used. See below for
        alternative algorithms. The choice of the default function may change
        from version to version and should not be relied on. Default value:
        None.

    kwargs : Any other keyword parameter is passed to the function that
        computes the maximum flow.

    Returns
    -------
    flow_value : integer, float
        Value of the maximum flow, i.e., net outflow from the source.

    Raises
    ------
    NetworkXError
        The algorithm does not support MultiGraph and MultiDiGraph. If
        the input graph is an instance of one of these two classes, a
        NetworkXError is raised.

    NetworkXUnbounded
        If the graph has a path of infinite capacity, the value of a
        feasible flow on the graph is unbounded above and the function
        raises a NetworkXUnbounded.

    See also
    --------
    :meth:`maximum_flow`
    :meth:`minimum_cut`
    :meth:`minimum_cut_value`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    Notes
    -----
    The function used in the flow_func parameter has to return a residual
    network that follows NetworkX conventions:

    The residual network :samp:`R` from an input graph :samp:`G` has the
    same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
    of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
    self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
    in :samp:`G`.

    For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
    is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
    in :samp:`G` or zero otherwise. If the capacity is infinite,
    :samp:`R[u][v]['capacity']` will have a high arbitrary finite value
    that does not affect the solution of the problem. This value is stored in
    :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
    :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
    satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.

    The flow value, defined as the total flow into :samp:`t`, the sink, is
    stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using
    only edges :samp:`(u, v)` such that
    :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
    :samp:`s`-:samp:`t` cut.

    Specific algorithms may store extra data in :samp:`R`.

    The function should supports an optional boolean parameter value_only. When
    True, it can optionally terminate the algorithm as soon as the maximum flow
    value and the minimum cut can be determined.

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edge("x", "a", capacity=3.0)
    >>> G.add_edge("x", "b", capacity=1.0)
    >>> G.add_edge("a", "c", capacity=3.0)
    >>> G.add_edge("b", "c", capacity=5.0)
    >>> G.add_edge("b", "d", capacity=4.0)
    >>> G.add_edge("d", "e", capacity=2.0)
    >>> G.add_edge("c", "y", capacity=2.0)
    >>> G.add_edge("e", "y", capacity=3.0)

    maximum_flow_value computes only the value of the
    maximum flow:

    >>> flow_value = nx.maximum_flow_value(G, "x", "y")
    >>> flow_value
    3.0

    You can also use alternative algorithms for computing the
    maximum flow by using the flow_func parameter.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> flow_value == nx.maximum_flow_value(
    ...     G, "x", "y", flow_func=shortest_augmenting_path
    ... )
    True

    """
    if flow_func is None:
        if kwargs:
            raise nx.NetworkXError(
                "You have to explicitly set a flow_func if"
                " you need to pass parameters via kwargs."
            )
        flow_func = default_flow_func

    if not callable(flow_func):
        raise nx.NetworkXError("flow_func has to be callable.")

    R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs)

    return R.graph["flow_value"]


@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")})
def minimum_cut(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs):
    """Compute the value and the node partition of a minimum (s, t)-cut.

    Use the max-flow min-cut theorem, i.e., the capacity of a minimum
    capacity cut is equal to the flow value of a maximum flow.

    Parameters
    ----------
    flowG : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    _s : node
        Source node for the flow.

    _t : node
        Sink node for the flow.

    capacity : string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    flow_func : function
        A function for computing the maximum flow among a pair of nodes
        in a capacitated graph. The function has to accept at least three
        parameters: a Graph or Digraph, a source node, and a target node.
        And return a residual network that follows NetworkX conventions
        (see Notes). If flow_func is None, the default maximum
        flow function (:meth:`preflow_push`) is used. See below for
        alternative algorithms. The choice of the default function may change
        from version to version and should not be relied on. Default value:
        None.

    kwargs : Any other keyword parameter is passed to the function that
        computes the maximum flow.

    Returns
    -------
    cut_value : integer, float
        Value of the minimum cut.

    partition : pair of node sets
        A partitioning of the nodes that defines a minimum cut.

    Raises
    ------
    NetworkXUnbounded
        If the graph has a path of infinite capacity, all cuts have
        infinite capacity and the function raises a NetworkXError.

    See also
    --------
    :meth:`maximum_flow`
    :meth:`maximum_flow_value`
    :meth:`minimum_cut_value`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    Notes
    -----
    The function used in the flow_func parameter has to return a residual
    network that follows NetworkX conventions:

    The residual network :samp:`R` from an input graph :samp:`G` has the
    same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
    of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
    self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
    in :samp:`G`.

    For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
    is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
    in :samp:`G` or zero otherwise. If the capacity is infinite,
    :samp:`R[u][v]['capacity']` will have a high arbitrary finite value
    that does not affect the solution of the problem. This value is stored in
    :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
    :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
    satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.

    The flow value, defined as the total flow into :samp:`t`, the sink, is
    stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using
    only edges :samp:`(u, v)` such that
    :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
    :samp:`s`-:samp:`t` cut.

    Specific algorithms may store extra data in :samp:`R`.

    The function should supports an optional boolean parameter value_only. When
    True, it can optionally terminate the algorithm as soon as the maximum flow
    value and the minimum cut can be determined.

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edge("x", "a", capacity=3.0)
    >>> G.add_edge("x", "b", capacity=1.0)
    >>> G.add_edge("a", "c", capacity=3.0)
    >>> G.add_edge("b", "c", capacity=5.0)
    >>> G.add_edge("b", "d", capacity=4.0)
    >>> G.add_edge("d", "e", capacity=2.0)
    >>> G.add_edge("c", "y", capacity=2.0)
    >>> G.add_edge("e", "y", capacity=3.0)

    minimum_cut computes both the value of the
    minimum cut and the node partition:

    >>> cut_value, partition = nx.minimum_cut(G, "x", "y")
    >>> reachable, non_reachable = partition

    'partition' here is a tuple with the two sets of nodes that define
    the minimum cut. You can compute the cut set of edges that induce
    the minimum cut as follows:

    >>> cutset = set()
    >>> for u, nbrs in ((n, G[n]) for n in reachable):
    ...     cutset.update((u, v) for v in nbrs if v in non_reachable)
    >>> print(sorted(cutset))
    [('c', 'y'), ('x', 'b')]
    >>> cut_value == sum(G.edges[u, v]["capacity"] for (u, v) in cutset)
    True

    You can also use alternative algorithms for computing the
    minimum cut by using the flow_func parameter.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> cut_value == nx.minimum_cut(G, "x", "y", flow_func=shortest_augmenting_path)[0]
    True

    """
    if flow_func is None:
        if kwargs:
            raise nx.NetworkXError(
                "You have to explicitly set a flow_func if"
                " you need to pass parameters via kwargs."
            )
        flow_func = default_flow_func

    if not callable(flow_func):
        raise nx.NetworkXError("flow_func has to be callable.")

    if kwargs.get("cutoff") is not None and flow_func is preflow_push:
        raise nx.NetworkXError("cutoff should not be specified.")

    R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs)
    # Remove saturated edges from the residual network
    cutset = [(u, v, d) for u, v, d in R.edges(data=True) if d["flow"] == d["capacity"]]
    R.remove_edges_from(cutset)

    # Then, reachable and non reachable nodes from source in the
    # residual network form the node partition that defines
    # the minimum cut.
    non_reachable = set(dict(nx.shortest_path_length(R, target=_t)))
    partition = (set(flowG) - non_reachable, non_reachable)
    # Finally add again cutset edges to the residual network to make
    # sure that it is reusable.
    if cutset is not None:
        R.add_edges_from(cutset)
    return (R.graph["flow_value"], partition)


@nx._dispatch(graphs="flowG", edge_attrs={"capacity": float("inf")})
def minimum_cut_value(flowG, _s, _t, capacity="capacity", flow_func=None, **kwargs):
    """Compute the value of a minimum (s, t)-cut.

    Use the max-flow min-cut theorem, i.e., the capacity of a minimum
    capacity cut is equal to the flow value of a maximum flow.

    Parameters
    ----------
    flowG : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    _s : node
        Source node for the flow.

    _t : node
        Sink node for the flow.

    capacity : string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    flow_func : function
        A function for computing the maximum flow among a pair of nodes
        in a capacitated graph. The function has to accept at least three
        parameters: a Graph or Digraph, a source node, and a target node.
        And return a residual network that follows NetworkX conventions
        (see Notes). If flow_func is None, the default maximum
        flow function (:meth:`preflow_push`) is used. See below for
        alternative algorithms. The choice of the default function may change
        from version to version and should not be relied on. Default value:
        None.

    kwargs : Any other keyword parameter is passed to the function that
        computes the maximum flow.

    Returns
    -------
    cut_value : integer, float
        Value of the minimum cut.

    Raises
    ------
    NetworkXUnbounded
        If the graph has a path of infinite capacity, all cuts have
        infinite capacity and the function raises a NetworkXError.

    See also
    --------
    :meth:`maximum_flow`
    :meth:`maximum_flow_value`
    :meth:`minimum_cut`
    :meth:`edmonds_karp`
    :meth:`preflow_push`
    :meth:`shortest_augmenting_path`

    Notes
    -----
    The function used in the flow_func parameter has to return a residual
    network that follows NetworkX conventions:

    The residual network :samp:`R` from an input graph :samp:`G` has the
    same nodes as :samp:`G`. :samp:`R` is a DiGraph that contains a pair
    of edges :samp:`(u, v)` and :samp:`(v, u)` iff :samp:`(u, v)` is not a
    self-loop, and at least one of :samp:`(u, v)` and :samp:`(v, u)` exists
    in :samp:`G`.

    For each edge :samp:`(u, v)` in :samp:`R`, :samp:`R[u][v]['capacity']`
    is equal to the capacity of :samp:`(u, v)` in :samp:`G` if it exists
    in :samp:`G` or zero otherwise. If the capacity is infinite,
    :samp:`R[u][v]['capacity']` will have a high arbitrary finite value
    that does not affect the solution of the problem. This value is stored in
    :samp:`R.graph['inf']`. For each edge :samp:`(u, v)` in :samp:`R`,
    :samp:`R[u][v]['flow']` represents the flow function of :samp:`(u, v)` and
    satisfies :samp:`R[u][v]['flow'] == -R[v][u]['flow']`.

    The flow value, defined as the total flow into :samp:`t`, the sink, is
    stored in :samp:`R.graph['flow_value']`. Reachability to :samp:`t` using
    only edges :samp:`(u, v)` such that
    :samp:`R[u][v]['flow'] < R[u][v]['capacity']` induces a minimum
    :samp:`s`-:samp:`t` cut.

    Specific algorithms may store extra data in :samp:`R`.

    The function should supports an optional boolean parameter value_only. When
    True, it can optionally terminate the algorithm as soon as the maximum flow
    value and the minimum cut can be determined.

    Examples
    --------
    >>> G = nx.DiGraph()
    >>> G.add_edge("x", "a", capacity=3.0)
    >>> G.add_edge("x", "b", capacity=1.0)
    >>> G.add_edge("a", "c", capacity=3.0)
    >>> G.add_edge("b", "c", capacity=5.0)
    >>> G.add_edge("b", "d", capacity=4.0)
    >>> G.add_edge("d", "e", capacity=2.0)
    >>> G.add_edge("c", "y", capacity=2.0)
    >>> G.add_edge("e", "y", capacity=3.0)

    minimum_cut_value computes only the value of the
    minimum cut:

    >>> cut_value = nx.minimum_cut_value(G, "x", "y")
    >>> cut_value
    3.0

    You can also use alternative algorithms for computing the
    minimum cut by using the flow_func parameter.

    >>> from networkx.algorithms.flow import shortest_augmenting_path
    >>> cut_value == nx.minimum_cut_value(
    ...     G, "x", "y", flow_func=shortest_augmenting_path
    ... )
    True

    """
    if flow_func is None:
        if kwargs:
            raise nx.NetworkXError(
                "You have to explicitly set a flow_func if"
                " you need to pass parameters via kwargs."
            )
        flow_func = default_flow_func

    if not callable(flow_func):
        raise nx.NetworkXError("flow_func has to be callable.")

    if kwargs.get("cutoff") is not None and flow_func is preflow_push:
        raise nx.NetworkXError("cutoff should not be specified.")

    R = flow_func(flowG, _s, _t, capacity=capacity, value_only=True, **kwargs)

    return R.graph["flow_value"]