File size: 34,690 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
"""Generators for classes of graphs used in studying social networks."""
import itertools
import math

import networkx as nx
from networkx.utils import py_random_state

__all__ = [
    "caveman_graph",
    "connected_caveman_graph",
    "relaxed_caveman_graph",
    "random_partition_graph",
    "planted_partition_graph",
    "gaussian_random_partition_graph",
    "ring_of_cliques",
    "windmill_graph",
    "stochastic_block_model",
    "LFR_benchmark_graph",
]


@nx._dispatch(graphs=None)
def caveman_graph(l, k):
    """Returns a caveman graph of `l` cliques of size `k`.

    Parameters
    ----------
    l : int
      Number of cliques
    k : int
      Size of cliques

    Returns
    -------
    G : NetworkX Graph
      caveman graph

    Notes
    -----
    This returns an undirected graph, it can be converted to a directed
    graph using :func:`nx.to_directed`, or a multigraph using
    ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
    described in [1]_ and it is unclear which of the directed
    generalizations is most useful.

    Examples
    --------
    >>> G = nx.caveman_graph(3, 3)

    See also
    --------

    connected_caveman_graph

    References
    ----------
    .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
       Amer. J. Soc. 105, 493-527, 1999.
    """
    # l disjoint cliques of size k
    G = nx.empty_graph(l * k)
    if k > 1:
        for start in range(0, l * k, k):
            edges = itertools.combinations(range(start, start + k), 2)
            G.add_edges_from(edges)
    return G


@nx._dispatch(graphs=None)
def connected_caveman_graph(l, k):
    """Returns a connected caveman graph of `l` cliques of size `k`.

    The connected caveman graph is formed by creating `n` cliques of size
    `k`, then a single edge in each clique is rewired to a node in an
    adjacent clique.

    Parameters
    ----------
    l : int
      number of cliques
    k : int
      size of cliques (k at least 2 or NetworkXError is raised)

    Returns
    -------
    G : NetworkX Graph
      connected caveman graph

    Raises
    ------
    NetworkXError
        If the size of cliques `k` is smaller than 2.

    Notes
    -----
    This returns an undirected graph, it can be converted to a directed
    graph using :func:`nx.to_directed`, or a multigraph using
    ``nx.MultiGraph(nx.caveman_graph(l, k))``. Only the undirected version is
    described in [1]_ and it is unclear which of the directed
    generalizations is most useful.

    Examples
    --------
    >>> G = nx.connected_caveman_graph(3, 3)

    References
    ----------
    .. [1] Watts, D. J. 'Networks, Dynamics, and the Small-World Phenomenon.'
       Amer. J. Soc. 105, 493-527, 1999.
    """
    if k < 2:
        raise nx.NetworkXError(
            "The size of cliques in a connected caveman graph " "must be at least 2."
        )

    G = nx.caveman_graph(l, k)
    for start in range(0, l * k, k):
        G.remove_edge(start, start + 1)
        G.add_edge(start, (start - 1) % (l * k))
    return G


@py_random_state(3)
@nx._dispatch(graphs=None)
def relaxed_caveman_graph(l, k, p, seed=None):
    """Returns a relaxed caveman graph.

    A relaxed caveman graph starts with `l` cliques of size `k`.  Edges are
    then randomly rewired with probability `p` to link different cliques.

    Parameters
    ----------
    l : int
      Number of groups
    k : int
      Size of cliques
    p : float
      Probability of rewiring each edge.
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : NetworkX Graph
      Relaxed Caveman Graph

    Raises
    ------
    NetworkXError
     If p is not in [0,1]

    Examples
    --------
    >>> G = nx.relaxed_caveman_graph(2, 3, 0.1, seed=42)

    References
    ----------
    .. [1] Santo Fortunato, Community Detection in Graphs,
       Physics Reports Volume 486, Issues 3-5, February 2010, Pages 75-174.
       https://arxiv.org/abs/0906.0612
    """
    G = nx.caveman_graph(l, k)
    nodes = list(G)
    for u, v in G.edges():
        if seed.random() < p:  # rewire the edge
            x = seed.choice(nodes)
            if G.has_edge(u, x):
                continue
            G.remove_edge(u, v)
            G.add_edge(u, x)
    return G


@py_random_state(3)
@nx._dispatch(graphs=None)
def random_partition_graph(sizes, p_in, p_out, seed=None, directed=False):
    """Returns the random partition graph with a partition of sizes.

    A partition graph is a graph of communities with sizes defined by
    s in sizes. Nodes in the same group are connected with probability
    p_in and nodes of different groups are connected with probability
    p_out.

    Parameters
    ----------
    sizes : list of ints
      Sizes of groups
    p_in : float
      probability of edges with in groups
    p_out : float
      probability of edges between groups
    directed : boolean optional, default=False
      Whether to create a directed graph
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : NetworkX Graph or DiGraph
      random partition graph of size sum(gs)

    Raises
    ------
    NetworkXError
      If p_in or p_out is not in [0,1]

    Examples
    --------
    >>> G = nx.random_partition_graph([10, 10, 10], 0.25, 0.01)
    >>> len(G)
    30
    >>> partition = G.graph["partition"]
    >>> len(partition)
    3

    Notes
    -----
    This is a generalization of the planted-l-partition described in
    [1]_.  It allows for the creation of groups of any size.

    The partition is store as a graph attribute 'partition'.

    References
    ----------
    .. [1] Santo Fortunato 'Community Detection in Graphs' Physical Reports
       Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
    """
    # Use geometric method for O(n+m) complexity algorithm
    # partition = nx.community_sets(nx.get_node_attributes(G, 'affiliation'))
    if not 0.0 <= p_in <= 1.0:
        raise nx.NetworkXError("p_in must be in [0,1]")
    if not 0.0 <= p_out <= 1.0:
        raise nx.NetworkXError("p_out must be in [0,1]")

    # create connection matrix
    num_blocks = len(sizes)
    p = [[p_out for s in range(num_blocks)] for r in range(num_blocks)]
    for r in range(num_blocks):
        p[r][r] = p_in

    return stochastic_block_model(
        sizes,
        p,
        nodelist=None,
        seed=seed,
        directed=directed,
        selfloops=False,
        sparse=True,
    )


@py_random_state(4)
@nx._dispatch(graphs=None)
def planted_partition_graph(l, k, p_in, p_out, seed=None, directed=False):
    """Returns the planted l-partition graph.

    This model partitions a graph with n=l*k vertices in
    l groups with k vertices each. Vertices of the same
    group are linked with a probability p_in, and vertices
    of different groups are linked with probability p_out.

    Parameters
    ----------
    l : int
      Number of groups
    k : int
      Number of vertices in each group
    p_in : float
      probability of connecting vertices within a group
    p_out : float
      probability of connected vertices between groups
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    directed : bool,optional (default=False)
      If True return a directed graph

    Returns
    -------
    G : NetworkX Graph or DiGraph
      planted l-partition graph

    Raises
    ------
    NetworkXError
      If p_in,p_out are not in [0,1] or

    Examples
    --------
    >>> G = nx.planted_partition_graph(4, 3, 0.5, 0.1, seed=42)

    See Also
    --------
    random_partition_model

    References
    ----------
    .. [1] A. Condon, R.M. Karp, Algorithms for graph partitioning
        on the planted partition model,
        Random Struct. Algor. 18 (2001) 116-140.

    .. [2] Santo Fortunato 'Community Detection in Graphs' Physical Reports
       Volume 486, Issue 3-5 p. 75-174. https://arxiv.org/abs/0906.0612
    """
    return random_partition_graph([k] * l, p_in, p_out, seed=seed, directed=directed)


@py_random_state(6)
@nx._dispatch(graphs=None)
def gaussian_random_partition_graph(n, s, v, p_in, p_out, directed=False, seed=None):
    """Generate a Gaussian random partition graph.

    A Gaussian random partition graph is created by creating k partitions
    each with a size drawn from a normal distribution with mean s and variance
    s/v. Nodes are connected within clusters with probability p_in and
    between clusters with probability p_out[1]

    Parameters
    ----------
    n : int
      Number of nodes in the graph
    s : float
      Mean cluster size
    v : float
      Shape parameter. The variance of cluster size distribution is s/v.
    p_in : float
      Probability of intra cluster connection.
    p_out : float
      Probability of inter cluster connection.
    directed : boolean, optional default=False
      Whether to create a directed graph or not
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : NetworkX Graph or DiGraph
      gaussian random partition graph

    Raises
    ------
    NetworkXError
      If s is > n
      If p_in or p_out is not in [0,1]

    Notes
    -----
    Note the number of partitions is dependent on s,v and n, and that the
    last partition may be considerably smaller, as it is sized to simply
    fill out the nodes [1]

    See Also
    --------
    random_partition_graph

    Examples
    --------
    >>> G = nx.gaussian_random_partition_graph(100, 10, 10, 0.25, 0.1)
    >>> len(G)
    100

    References
    ----------
    .. [1] Ulrik Brandes, Marco Gaertler, Dorothea Wagner,
       Experiments on Graph Clustering Algorithms,
       In the proceedings of the 11th Europ. Symp. Algorithms, 2003.
    """
    if s > n:
        raise nx.NetworkXError("s must be <= n")
    assigned = 0
    sizes = []
    while True:
        size = int(seed.gauss(s, s / v + 0.5))
        if size < 1:  # how to handle 0 or negative sizes?
            continue
        if assigned + size >= n:
            sizes.append(n - assigned)
            break
        assigned += size
        sizes.append(size)
    return random_partition_graph(sizes, p_in, p_out, seed=seed, directed=directed)


@nx._dispatch(graphs=None)
def ring_of_cliques(num_cliques, clique_size):
    """Defines a "ring of cliques" graph.

    A ring of cliques graph is consisting of cliques, connected through single
    links. Each clique is a complete graph.

    Parameters
    ----------
    num_cliques : int
        Number of cliques
    clique_size : int
        Size of cliques

    Returns
    -------
    G : NetworkX Graph
        ring of cliques graph

    Raises
    ------
    NetworkXError
        If the number of cliques is lower than 2 or
        if the size of cliques is smaller than 2.

    Examples
    --------
    >>> G = nx.ring_of_cliques(8, 4)

    See Also
    --------
    connected_caveman_graph

    Notes
    -----
    The `connected_caveman_graph` graph removes a link from each clique to
    connect it with the next clique. Instead, the `ring_of_cliques` graph
    simply adds the link without removing any link from the cliques.
    """
    if num_cliques < 2:
        raise nx.NetworkXError("A ring of cliques must have at least " "two cliques")
    if clique_size < 2:
        raise nx.NetworkXError("The cliques must have at least two nodes")

    G = nx.Graph()
    for i in range(num_cliques):
        edges = itertools.combinations(
            range(i * clique_size, i * clique_size + clique_size), 2
        )
        G.add_edges_from(edges)
        G.add_edge(
            i * clique_size + 1, (i + 1) * clique_size % (num_cliques * clique_size)
        )
    return G


@nx._dispatch(graphs=None)
def windmill_graph(n, k):
    """Generate a windmill graph.
    A windmill graph is a graph of `n` cliques each of size `k` that are all
    joined at one node.
    It can be thought of as taking a disjoint union of `n` cliques of size `k`,
    selecting one point from each, and contracting all of the selected points.
    Alternatively, one could generate `n` cliques of size `k-1` and one node
    that is connected to all other nodes in the graph.

    Parameters
    ----------
    n : int
        Number of cliques
    k : int
        Size of cliques

    Returns
    -------
    G : NetworkX Graph
        windmill graph with n cliques of size k

    Raises
    ------
    NetworkXError
        If the number of cliques is less than two
        If the size of the cliques are less than two

    Examples
    --------
    >>> G = nx.windmill_graph(4, 5)

    Notes
    -----
    The node labeled `0` will be the node connected to all other nodes.
    Note that windmill graphs are usually denoted `Wd(k,n)`, so the parameters
    are in the opposite order as the parameters of this method.
    """
    if n < 2:
        msg = "A windmill graph must have at least two cliques"
        raise nx.NetworkXError(msg)
    if k < 2:
        raise nx.NetworkXError("The cliques must have at least two nodes")

    G = nx.disjoint_union_all(
        itertools.chain(
            [nx.complete_graph(k)], (nx.complete_graph(k - 1) for _ in range(n - 1))
        )
    )
    G.add_edges_from((0, i) for i in range(k, G.number_of_nodes()))
    return G


@py_random_state(3)
@nx._dispatch(graphs=None)
def stochastic_block_model(
    sizes, p, nodelist=None, seed=None, directed=False, selfloops=False, sparse=True
):
    """Returns a stochastic block model graph.

    This model partitions the nodes in blocks of arbitrary sizes, and places
    edges between pairs of nodes independently, with a probability that depends
    on the blocks.

    Parameters
    ----------
    sizes : list of ints
        Sizes of blocks
    p : list of list of floats
        Element (r,s) gives the density of edges going from the nodes
        of group r to nodes of group s.
        p must match the number of groups (len(sizes) == len(p)),
        and it must be symmetric if the graph is undirected.
    nodelist : list, optional
        The block tags are assigned according to the node identifiers
        in nodelist. If nodelist is None, then the ordering is the
        range [0,sum(sizes)-1].
    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    directed : boolean optional, default=False
        Whether to create a directed graph or not.
    selfloops : boolean optional, default=False
        Whether to include self-loops or not.
    sparse: boolean optional, default=True
        Use the sparse heuristic to speed up the generator.

    Returns
    -------
    g : NetworkX Graph or DiGraph
        Stochastic block model graph of size sum(sizes)

    Raises
    ------
    NetworkXError
      If probabilities are not in [0,1].
      If the probability matrix is not square (directed case).
      If the probability matrix is not symmetric (undirected case).
      If the sizes list does not match nodelist or the probability matrix.
      If nodelist contains duplicate.

    Examples
    --------
    >>> sizes = [75, 75, 300]
    >>> probs = [[0.25, 0.05, 0.02], [0.05, 0.35, 0.07], [0.02, 0.07, 0.40]]
    >>> g = nx.stochastic_block_model(sizes, probs, seed=0)
    >>> len(g)
    450
    >>> H = nx.quotient_graph(g, g.graph["partition"], relabel=True)
    >>> for v in H.nodes(data=True):
    ...     print(round(v[1]["density"], 3))
    ...
    0.245
    0.348
    0.405
    >>> for v in H.edges(data=True):
    ...     print(round(1.0 * v[2]["weight"] / (sizes[v[0]] * sizes[v[1]]), 3))
    ...
    0.051
    0.022
    0.07

    See Also
    --------
    random_partition_graph
    planted_partition_graph
    gaussian_random_partition_graph
    gnp_random_graph

    References
    ----------
    .. [1] Holland, P. W., Laskey, K. B., & Leinhardt, S.,
           "Stochastic blockmodels: First steps",
           Social networks, 5(2), 109-137, 1983.
    """
    # Check if dimensions match
    if len(sizes) != len(p):
        raise nx.NetworkXException("'sizes' and 'p' do not match.")
    # Check for probability symmetry (undirected) and shape (directed)
    for row in p:
        if len(p) != len(row):
            raise nx.NetworkXException("'p' must be a square matrix.")
    if not directed:
        p_transpose = [list(i) for i in zip(*p)]
        for i in zip(p, p_transpose):
            for j in zip(i[0], i[1]):
                if abs(j[0] - j[1]) > 1e-08:
                    raise nx.NetworkXException("'p' must be symmetric.")
    # Check for probability range
    for row in p:
        for prob in row:
            if prob < 0 or prob > 1:
                raise nx.NetworkXException("Entries of 'p' not in [0,1].")
    # Check for nodelist consistency
    if nodelist is not None:
        if len(nodelist) != sum(sizes):
            raise nx.NetworkXException("'nodelist' and 'sizes' do not match.")
        if len(nodelist) != len(set(nodelist)):
            raise nx.NetworkXException("nodelist contains duplicate.")
    else:
        nodelist = range(sum(sizes))

    # Setup the graph conditionally to the directed switch.
    block_range = range(len(sizes))
    if directed:
        g = nx.DiGraph()
        block_iter = itertools.product(block_range, block_range)
    else:
        g = nx.Graph()
        block_iter = itertools.combinations_with_replacement(block_range, 2)
    # Split nodelist in a partition (list of sets).
    size_cumsum = [sum(sizes[0:x]) for x in range(len(sizes) + 1)]
    g.graph["partition"] = [
        set(nodelist[size_cumsum[x] : size_cumsum[x + 1]])
        for x in range(len(size_cumsum) - 1)
    ]
    # Setup nodes and graph name
    for block_id, nodes in enumerate(g.graph["partition"]):
        for node in nodes:
            g.add_node(node, block=block_id)

    g.name = "stochastic_block_model"

    # Test for edge existence
    parts = g.graph["partition"]
    for i, j in block_iter:
        if i == j:
            if directed:
                if selfloops:
                    edges = itertools.product(parts[i], parts[i])
                else:
                    edges = itertools.permutations(parts[i], 2)
            else:
                edges = itertools.combinations(parts[i], 2)
                if selfloops:
                    edges = itertools.chain(edges, zip(parts[i], parts[i]))
            for e in edges:
                if seed.random() < p[i][j]:
                    g.add_edge(*e)
        else:
            edges = itertools.product(parts[i], parts[j])
        if sparse:
            if p[i][j] == 1:  # Test edges cases p_ij = 0 or 1
                for e in edges:
                    g.add_edge(*e)
            elif p[i][j] > 0:
                while True:
                    try:
                        logrand = math.log(seed.random())
                        skip = math.floor(logrand / math.log(1 - p[i][j]))
                        # consume "skip" edges
                        next(itertools.islice(edges, skip, skip), None)
                        e = next(edges)
                        g.add_edge(*e)  # __safe
                    except StopIteration:
                        break
        else:
            for e in edges:
                if seed.random() < p[i][j]:
                    g.add_edge(*e)  # __safe
    return g


def _zipf_rv_below(gamma, xmin, threshold, seed):
    """Returns a random value chosen from the bounded Zipf distribution.

    Repeatedly draws values from the Zipf distribution until the
    threshold is met, then returns that value.
    """
    result = nx.utils.zipf_rv(gamma, xmin, seed)
    while result > threshold:
        result = nx.utils.zipf_rv(gamma, xmin, seed)
    return result


def _powerlaw_sequence(gamma, low, high, condition, length, max_iters, seed):
    """Returns a list of numbers obeying a constrained power law distribution.

    ``gamma`` and ``low`` are the parameters for the Zipf distribution.

    ``high`` is the maximum allowed value for values draw from the Zipf
    distribution. For more information, see :func:`_zipf_rv_below`.

    ``condition`` and ``length`` are Boolean-valued functions on
    lists. While generating the list, random values are drawn and
    appended to the list until ``length`` is satisfied by the created
    list. Once ``condition`` is satisfied, the sequence generated in
    this way is returned.

    ``max_iters`` indicates the number of times to generate a list
    satisfying ``length``. If the number of iterations exceeds this
    value, :exc:`~networkx.exception.ExceededMaxIterations` is raised.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.
    """
    for i in range(max_iters):
        seq = []
        while not length(seq):
            seq.append(_zipf_rv_below(gamma, low, high, seed))
        if condition(seq):
            return seq
    raise nx.ExceededMaxIterations("Could not create power law sequence")


def _hurwitz_zeta(x, q, tolerance):
    """The Hurwitz zeta function, or the Riemann zeta function of two arguments.

    ``x`` must be greater than one and ``q`` must be positive.

    This function repeatedly computes subsequent partial sums until
    convergence, as decided by ``tolerance``.
    """
    z = 0
    z_prev = -float("inf")
    k = 0
    while abs(z - z_prev) > tolerance:
        z_prev = z
        z += 1 / ((k + q) ** x)
        k += 1
    return z


def _generate_min_degree(gamma, average_degree, max_degree, tolerance, max_iters):
    """Returns a minimum degree from the given average degree."""
    # Defines zeta function whether or not Scipy is available
    try:
        from scipy.special import zeta
    except ImportError:

        def zeta(x, q):
            return _hurwitz_zeta(x, q, tolerance)

    min_deg_top = max_degree
    min_deg_bot = 1
    min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
    itrs = 0
    mid_avg_deg = 0
    while abs(mid_avg_deg - average_degree) > tolerance:
        if itrs > max_iters:
            raise nx.ExceededMaxIterations("Could not match average_degree")
        mid_avg_deg = 0
        for x in range(int(min_deg_mid), max_degree + 1):
            mid_avg_deg += (x ** (-gamma + 1)) / zeta(gamma, min_deg_mid)
        if mid_avg_deg > average_degree:
            min_deg_top = min_deg_mid
            min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
        else:
            min_deg_bot = min_deg_mid
            min_deg_mid = (min_deg_top - min_deg_bot) / 2 + min_deg_bot
        itrs += 1
    # return int(min_deg_mid + 0.5)
    return round(min_deg_mid)


def _generate_communities(degree_seq, community_sizes, mu, max_iters, seed):
    """Returns a list of sets, each of which represents a community.

    ``degree_seq`` is the degree sequence that must be met by the
    graph.

    ``community_sizes`` is the community size distribution that must be
    met by the generated list of sets.

    ``mu`` is a float in the interval [0, 1] indicating the fraction of
    intra-community edges incident to each node.

    ``max_iters`` is the number of times to try to add a node to a
    community. This must be greater than the length of
    ``degree_seq``, otherwise this function will always fail. If
    the number of iterations exceeds this value,
    :exc:`~networkx.exception.ExceededMaxIterations` is raised.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    The communities returned by this are sets of integers in the set {0,
    ..., *n* - 1}, where *n* is the length of ``degree_seq``.

    """
    # This assumes the nodes in the graph will be natural numbers.
    result = [set() for _ in community_sizes]
    n = len(degree_seq)
    free = list(range(n))
    for i in range(max_iters):
        v = free.pop()
        c = seed.choice(range(len(community_sizes)))
        # s = int(degree_seq[v] * (1 - mu) + 0.5)
        s = round(degree_seq[v] * (1 - mu))
        # If the community is large enough, add the node to the chosen
        # community. Otherwise, return it to the list of unaffiliated
        # nodes.
        if s < community_sizes[c]:
            result[c].add(v)
        else:
            free.append(v)
        # If the community is too big, remove a node from it.
        if len(result[c]) > community_sizes[c]:
            free.append(result[c].pop())
        if not free:
            return result
    msg = "Could not assign communities; try increasing min_community"
    raise nx.ExceededMaxIterations(msg)


@py_random_state(11)
@nx._dispatch(graphs=None)
def LFR_benchmark_graph(
    n,
    tau1,
    tau2,
    mu,
    average_degree=None,
    min_degree=None,
    max_degree=None,
    min_community=None,
    max_community=None,
    tol=1.0e-7,
    max_iters=500,
    seed=None,
):
    r"""Returns the LFR benchmark graph.

    This algorithm proceeds as follows:

    1) Find a degree sequence with a power law distribution, and minimum
       value ``min_degree``, which has approximate average degree
       ``average_degree``. This is accomplished by either

       a) specifying ``min_degree`` and not ``average_degree``,
       b) specifying ``average_degree`` and not ``min_degree``, in which
          case a suitable minimum degree will be found.

       ``max_degree`` can also be specified, otherwise it will be set to
       ``n``. Each node *u* will have $\mu \mathrm{deg}(u)$ edges
       joining it to nodes in communities other than its own and $(1 -
       \mu) \mathrm{deg}(u)$ edges joining it to nodes in its own
       community.
    2) Generate community sizes according to a power law distribution
       with exponent ``tau2``. If ``min_community`` and
       ``max_community`` are not specified they will be selected to be
       ``min_degree`` and ``max_degree``, respectively.  Community sizes
       are generated until the sum of their sizes equals ``n``.
    3) Each node will be randomly assigned a community with the
       condition that the community is large enough for the node's
       intra-community degree, $(1 - \mu) \mathrm{deg}(u)$ as
       described in step 2. If a community grows too large, a random node
       will be selected for reassignment to a new community, until all
       nodes have been assigned a community.
    4) Each node *u* then adds $(1 - \mu) \mathrm{deg}(u)$
       intra-community edges and $\mu \mathrm{deg}(u)$ inter-community
       edges.

    Parameters
    ----------
    n : int
        Number of nodes in the created graph.

    tau1 : float
        Power law exponent for the degree distribution of the created
        graph. This value must be strictly greater than one.

    tau2 : float
        Power law exponent for the community size distribution in the
        created graph. This value must be strictly greater than one.

    mu : float
        Fraction of inter-community edges incident to each node. This
        value must be in the interval [0, 1].

    average_degree : float
        Desired average degree of nodes in the created graph. This value
        must be in the interval [0, *n*]. Exactly one of this and
        ``min_degree`` must be specified, otherwise a
        :exc:`NetworkXError` is raised.

    min_degree : int
        Minimum degree of nodes in the created graph. This value must be
        in the interval [0, *n*]. Exactly one of this and
        ``average_degree`` must be specified, otherwise a
        :exc:`NetworkXError` is raised.

    max_degree : int
        Maximum degree of nodes in the created graph. If not specified,
        this is set to ``n``, the total number of nodes in the graph.

    min_community : int
        Minimum size of communities in the graph. If not specified, this
        is set to ``min_degree``.

    max_community : int
        Maximum size of communities in the graph. If not specified, this
        is set to ``n``, the total number of nodes in the graph.

    tol : float
        Tolerance when comparing floats, specifically when comparing
        average degree values.

    max_iters : int
        Maximum number of iterations to try to create the community sizes,
        degree distribution, and community affiliations.

    seed : integer, random_state, or None (default)
        Indicator of random number generation state.
        See :ref:`Randomness<randomness>`.

    Returns
    -------
    G : NetworkX graph
        The LFR benchmark graph generated according to the specified
        parameters.

        Each node in the graph has a node attribute ``'community'`` that
        stores the community (that is, the set of nodes) that includes
        it.

    Raises
    ------
    NetworkXError
        If any of the parameters do not meet their upper and lower bounds:

        - ``tau1`` and ``tau2`` must be strictly greater than 1.
        - ``mu`` must be in [0, 1].
        - ``max_degree`` must be in {1, ..., *n*}.
        - ``min_community`` and ``max_community`` must be in {0, ...,
          *n*}.

        If not exactly one of ``average_degree`` and ``min_degree`` is
        specified.

        If ``min_degree`` is not specified and a suitable ``min_degree``
        cannot be found.

    ExceededMaxIterations
        If a valid degree sequence cannot be created within
        ``max_iters`` number of iterations.

        If a valid set of community sizes cannot be created within
        ``max_iters`` number of iterations.

        If a valid community assignment cannot be created within ``10 *
        n * max_iters`` number of iterations.

    Examples
    --------
    Basic usage::

        >>> from networkx.generators.community import LFR_benchmark_graph
        >>> n = 250
        >>> tau1 = 3
        >>> tau2 = 1.5
        >>> mu = 0.1
        >>> G = LFR_benchmark_graph(
        ...     n, tau1, tau2, mu, average_degree=5, min_community=20, seed=10
        ... )

    Continuing the example above, you can get the communities from the
    node attributes of the graph::

        >>> communities = {frozenset(G.nodes[v]["community"]) for v in G}

    Notes
    -----
    This algorithm differs slightly from the original way it was
    presented in [1].

    1) Rather than connecting the graph via a configuration model then
       rewiring to match the intra-community and inter-community
       degrees, we do this wiring explicitly at the end, which should be
       equivalent.
    2) The code posted on the author's website [2] calculates the random
       power law distributed variables and their average using
       continuous approximations, whereas we use the discrete
       distributions here as both degree and community size are
       discrete.

    Though the authors describe the algorithm as quite robust, testing
    during development indicates that a somewhat narrower parameter set
    is likely to successfully produce a graph. Some suggestions have
    been provided in the event of exceptions.

    References
    ----------
    .. [1] "Benchmark graphs for testing community detection algorithms",
           Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi,
           Phys. Rev. E 78, 046110 2008
    .. [2] https://www.santofortunato.net/resources

    """
    # Perform some basic parameter validation.
    if not tau1 > 1:
        raise nx.NetworkXError("tau1 must be greater than one")
    if not tau2 > 1:
        raise nx.NetworkXError("tau2 must be greater than one")
    if not 0 <= mu <= 1:
        raise nx.NetworkXError("mu must be in the interval [0, 1]")

    # Validate parameters for generating the degree sequence.
    if max_degree is None:
        max_degree = n
    elif not 0 < max_degree <= n:
        raise nx.NetworkXError("max_degree must be in the interval (0, n]")
    if not ((min_degree is None) ^ (average_degree is None)):
        raise nx.NetworkXError(
            "Must assign exactly one of min_degree and" " average_degree"
        )
    if min_degree is None:
        min_degree = _generate_min_degree(
            tau1, average_degree, max_degree, tol, max_iters
        )

    # Generate a degree sequence with a power law distribution.
    low, high = min_degree, max_degree

    def condition(seq):
        return sum(seq) % 2 == 0

    def length(seq):
        return len(seq) >= n

    deg_seq = _powerlaw_sequence(tau1, low, high, condition, length, max_iters, seed)

    # Validate parameters for generating the community size sequence.
    if min_community is None:
        min_community = min(deg_seq)
    if max_community is None:
        max_community = max(deg_seq)

    # Generate a community size sequence with a power law distribution.
    #
    # TODO The original code incremented the number of iterations each
    # time a new Zipf random value was drawn from the distribution. This
    # differed from the way the number of iterations was incremented in
    # `_powerlaw_degree_sequence`, so this code was changed to match
    # that one. As a result, this code is allowed many more chances to
    # generate a valid community size sequence.
    low, high = min_community, max_community

    def condition(seq):
        return sum(seq) == n

    def length(seq):
        return sum(seq) >= n

    comms = _powerlaw_sequence(tau2, low, high, condition, length, max_iters, seed)

    # Generate the communities based on the given degree sequence and
    # community sizes.
    max_iters *= 10 * n
    communities = _generate_communities(deg_seq, comms, mu, max_iters, seed)

    # Finally, generate the benchmark graph based on the given
    # communities, joining nodes according to the intra- and
    # inter-community degrees.
    G = nx.Graph()
    G.add_nodes_from(range(n))
    for c in communities:
        for u in c:
            while G.degree(u) < round(deg_seq[u] * (1 - mu)):
                v = seed.choice(list(c))
                G.add_edge(u, v)
            while G.degree(u) < deg_seq[u]:
                v = seed.choice(range(n))
                if v not in c:
                    G.add_edge(u, v)
            G.nodes[u]["community"] = c
    return G