Spaces:
Running
Running
File size: 7,674 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
"""Functions for computing large cliques and maximum independent sets."""
import networkx as nx
from networkx.algorithms.approximation import ramsey
from networkx.utils import not_implemented_for
__all__ = [
"clique_removal",
"max_clique",
"large_clique_size",
"maximum_independent_set",
]
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def maximum_independent_set(G):
"""Returns an approximate maximum independent set.
Independent set or stable set is a set of vertices in a graph, no two of
which are adjacent. That is, it is a set I of vertices such that for every
two vertices in I, there is no edge connecting the two. Equivalently, each
edge in the graph has at most one endpoint in I. The size of an independent
set is the number of vertices it contains [1]_.
A maximum independent set is a largest independent set for a given graph G
and its size is denoted $\\alpha(G)$. The problem of finding such a set is called
the maximum independent set problem and is an NP-hard optimization problem.
As such, it is unlikely that there exists an efficient algorithm for finding
a maximum independent set of a graph.
The Independent Set algorithm is based on [2]_.
Parameters
----------
G : NetworkX graph
Undirected graph
Returns
-------
iset : Set
The apx-maximum independent set
Examples
--------
>>> G = nx.path_graph(10)
>>> nx.approximation.maximum_independent_set(G)
{0, 2, 4, 6, 9}
Raises
------
NetworkXNotImplemented
If the graph is directed or is a multigraph.
Notes
-----
Finds the $O(|V|/(log|V|)^2)$ apx of independent set in the worst case.
References
----------
.. [1] `Wikipedia: Independent set
<https://en.wikipedia.org/wiki/Independent_set_(graph_theory)>`_
.. [2] Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
"""
iset, _ = clique_removal(G)
return iset
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def max_clique(G):
r"""Find the Maximum Clique
Finds the $O(|V|/(log|V|)^2)$ apx of maximum clique/independent set
in the worst case.
Parameters
----------
G : NetworkX graph
Undirected graph
Returns
-------
clique : set
The apx-maximum clique of the graph
Examples
--------
>>> G = nx.path_graph(10)
>>> nx.approximation.max_clique(G)
{8, 9}
Raises
------
NetworkXNotImplemented
If the graph is directed or is a multigraph.
Notes
-----
A clique in an undirected graph G = (V, E) is a subset of the vertex set
`C \subseteq V` such that for every two vertices in C there exists an edge
connecting the two. This is equivalent to saying that the subgraph
induced by C is complete (in some cases, the term clique may also refer
to the subgraph).
A maximum clique is a clique of the largest possible size in a given graph.
The clique number `\omega(G)` of a graph G is the number of
vertices in a maximum clique in G. The intersection number of
G is the smallest number of cliques that together cover all edges of G.
https://en.wikipedia.org/wiki/Maximum_clique
References
----------
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
doi:10.1007/BF01994876
"""
# finding the maximum clique in a graph is equivalent to finding
# the independent set in the complementary graph
cgraph = nx.complement(G)
iset, _ = clique_removal(cgraph)
return iset
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def clique_removal(G):
r"""Repeatedly remove cliques from the graph.
Results in a $O(|V|/(\log |V|)^2)$ approximation of maximum clique
and independent set. Returns the largest independent set found, along
with found maximal cliques.
Parameters
----------
G : NetworkX graph
Undirected graph
Returns
-------
max_ind_cliques : (set, list) tuple
2-tuple of Maximal Independent Set and list of maximal cliques (sets).
Examples
--------
>>> G = nx.path_graph(10)
>>> nx.approximation.clique_removal(G)
({0, 2, 4, 6, 9}, [{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}])
Raises
------
NetworkXNotImplemented
If the graph is directed or is a multigraph.
References
----------
.. [1] Boppana, R., & Halldórsson, M. M. (1992).
Approximating maximum independent sets by excluding subgraphs.
BIT Numerical Mathematics, 32(2), 180–196. Springer.
"""
graph = G.copy()
c_i, i_i = ramsey.ramsey_R2(graph)
cliques = [c_i]
isets = [i_i]
while graph:
graph.remove_nodes_from(c_i)
c_i, i_i = ramsey.ramsey_R2(graph)
if c_i:
cliques.append(c_i)
if i_i:
isets.append(i_i)
# Determine the largest independent set as measured by cardinality.
maxiset = max(isets, key=len)
return maxiset, cliques
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def large_clique_size(G):
"""Find the size of a large clique in a graph.
A *clique* is a subset of nodes in which each pair of nodes is
adjacent. This function is a heuristic for finding the size of a
large clique in the graph.
Parameters
----------
G : NetworkX graph
Returns
-------
k: integer
The size of a large clique in the graph.
Examples
--------
>>> G = nx.path_graph(10)
>>> nx.approximation.large_clique_size(G)
2
Raises
------
NetworkXNotImplemented
If the graph is directed or is a multigraph.
Notes
-----
This implementation is from [1]_. Its worst case time complexity is
:math:`O(n d^2)`, where *n* is the number of nodes in the graph and
*d* is the maximum degree.
This function is a heuristic, which means it may work well in
practice, but there is no rigorous mathematical guarantee on the
ratio between the returned number and the actual largest clique size
in the graph.
References
----------
.. [1] Pattabiraman, Bharath, et al.
"Fast Algorithms for the Maximum Clique Problem on Massive Graphs
with Applications to Overlapping Community Detection."
*Internet Mathematics* 11.4-5 (2015): 421--448.
<https://doi.org/10.1080/15427951.2014.986778>
See also
--------
:func:`networkx.algorithms.approximation.clique.max_clique`
A function that returns an approximate maximum clique with a
guarantee on the approximation ratio.
:mod:`networkx.algorithms.clique`
Functions for finding the exact maximum clique in a graph.
"""
degrees = G.degree
def _clique_heuristic(G, U, size, best_size):
if not U:
return max(best_size, size)
u = max(U, key=degrees)
U.remove(u)
N_prime = {v for v in G[u] if degrees[v] >= best_size}
return _clique_heuristic(G, U & N_prime, size + 1, best_size)
best_size = 0
nodes = (u for u in G if degrees[u] >= best_size)
for u in nodes:
neighbors = {v for v in G[u] if degrees[v] >= best_size}
best_size = _clique_heuristic(G, neighbors, 1, best_size)
return best_size
|