File size: 8,148 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Functions for computing treewidth decomposition.

Treewidth of an undirected graph is a number associated with the graph.
It can be defined as the size of the largest vertex set (bag) in a tree
decomposition of the graph minus one.

`Wikipedia: Treewidth <https://en.wikipedia.org/wiki/Treewidth>`_

The notions of treewidth and tree decomposition have gained their
attractiveness partly because many graph and network problems that are
intractable (e.g., NP-hard) on arbitrary graphs become efficiently
solvable (e.g., with a linear time algorithm) when the treewidth of the
input graphs is bounded by a constant [1]_ [2]_.

There are two different functions for computing a tree decomposition:
:func:`treewidth_min_degree` and :func:`treewidth_min_fill_in`.

.. [1] Hans L. Bodlaender and Arie M. C. A. Koster. 2010. "Treewidth
      computations I.Upper bounds". Inf. Comput. 208, 3 (March 2010),259-275.
      http://dx.doi.org/10.1016/j.ic.2009.03.008

.. [2] Hans L. Bodlaender. "Discovering Treewidth". Institute of Information
      and Computing Sciences, Utrecht University.
      Technical Report UU-CS-2005-018.
      http://www.cs.uu.nl

.. [3] K. Wang, Z. Lu, and J. Hicks *Treewidth*.
      https://web.archive.org/web/20210507025929/http://web.eecs.utk.edu/~cphill25/cs594_spring2015_projects/treewidth.pdf

"""

import itertools
import sys
from heapq import heapify, heappop, heappush

import networkx as nx
from networkx.utils import not_implemented_for

__all__ = ["treewidth_min_degree", "treewidth_min_fill_in"]


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def treewidth_min_degree(G):
    """Returns a treewidth decomposition using the Minimum Degree heuristic.

    The heuristic chooses the nodes according to their degree, i.e., first
    the node with the lowest degree is chosen, then the graph is updated
    and the corresponding node is removed. Next, a new node with the lowest
    degree is chosen, and so on.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    Treewidth decomposition : (int, Graph) tuple
          2-tuple with treewidth and the corresponding decomposed tree.
    """
    deg_heuristic = MinDegreeHeuristic(G)
    return treewidth_decomp(G, lambda graph: deg_heuristic.best_node(graph))


@not_implemented_for("directed")
@not_implemented_for("multigraph")
@nx._dispatch
def treewidth_min_fill_in(G):
    """Returns a treewidth decomposition using the Minimum Fill-in heuristic.

    The heuristic chooses a node from the graph, where the number of edges
    added turning the neighbourhood of the chosen node into clique is as
    small as possible.

    Parameters
    ----------
    G : NetworkX graph

    Returns
    -------
    Treewidth decomposition : (int, Graph) tuple
        2-tuple with treewidth and the corresponding decomposed tree.
    """
    return treewidth_decomp(G, min_fill_in_heuristic)


class MinDegreeHeuristic:
    """Implements the Minimum Degree heuristic.

    The heuristic chooses the nodes according to their degree
    (number of neighbours), i.e., first the node with the lowest degree is
    chosen, then the graph is updated and the corresponding node is
    removed. Next, a new node with the lowest degree is chosen, and so on.
    """

    def __init__(self, graph):
        self._graph = graph

        # nodes that have to be updated in the heap before each iteration
        self._update_nodes = []

        self._degreeq = []  # a heapq with 3-tuples (degree,unique_id,node)
        self.count = itertools.count()

        # build heap with initial degrees
        for n in graph:
            self._degreeq.append((len(graph[n]), next(self.count), n))
        heapify(self._degreeq)

    def best_node(self, graph):
        # update nodes in self._update_nodes
        for n in self._update_nodes:
            # insert changed degrees into degreeq
            heappush(self._degreeq, (len(graph[n]), next(self.count), n))

        # get the next valid (minimum degree) node
        while self._degreeq:
            (min_degree, _, elim_node) = heappop(self._degreeq)
            if elim_node not in graph or len(graph[elim_node]) != min_degree:
                # outdated entry in degreeq
                continue
            elif min_degree == len(graph) - 1:
                # fully connected: abort condition
                return None

            # remember to update nodes in the heap before getting the next node
            self._update_nodes = graph[elim_node]
            return elim_node

        # the heap is empty: abort
        return None


def min_fill_in_heuristic(graph):
    """Implements the Minimum Degree heuristic.

    Returns the node from the graph, where the number of edges added when
    turning the neighbourhood of the chosen node into clique is as small as
    possible. This algorithm chooses the nodes using the Minimum Fill-In
    heuristic. The running time of the algorithm is :math:`O(V^3)` and it uses
    additional constant memory."""

    if len(graph) == 0:
        return None

    min_fill_in_node = None

    min_fill_in = sys.maxsize

    # sort nodes by degree
    nodes_by_degree = sorted(graph, key=lambda x: len(graph[x]))
    min_degree = len(graph[nodes_by_degree[0]])

    # abort condition (handle complete graph)
    if min_degree == len(graph) - 1:
        return None

    for node in nodes_by_degree:
        num_fill_in = 0
        nbrs = graph[node]
        for nbr in nbrs:
            # count how many nodes in nbrs current nbr is not connected to
            # subtract 1 for the node itself
            num_fill_in += len(nbrs - graph[nbr]) - 1
            if num_fill_in >= 2 * min_fill_in:
                break

        num_fill_in /= 2  # divide by 2 because of double counting

        if num_fill_in < min_fill_in:  # update min-fill-in node
            if num_fill_in == 0:
                return node
            min_fill_in = num_fill_in
            min_fill_in_node = node

    return min_fill_in_node


@nx._dispatch
def treewidth_decomp(G, heuristic=min_fill_in_heuristic):
    """Returns a treewidth decomposition using the passed heuristic.

    Parameters
    ----------
    G : NetworkX graph
    heuristic : heuristic function

    Returns
    -------
    Treewidth decomposition : (int, Graph) tuple
        2-tuple with treewidth and the corresponding decomposed tree.
    """

    # make dict-of-sets structure
    graph = {n: set(G[n]) - {n} for n in G}

    # stack containing nodes and neighbors in the order from the heuristic
    node_stack = []

    # get first node from heuristic
    elim_node = heuristic(graph)
    while elim_node is not None:
        # connect all neighbours with each other
        nbrs = graph[elim_node]
        for u, v in itertools.permutations(nbrs, 2):
            if v not in graph[u]:
                graph[u].add(v)

        # push node and its current neighbors on stack
        node_stack.append((elim_node, nbrs))

        # remove node from graph
        for u in graph[elim_node]:
            graph[u].remove(elim_node)

        del graph[elim_node]
        elim_node = heuristic(graph)

    # the abort condition is met; put all remaining nodes into one bag
    decomp = nx.Graph()
    first_bag = frozenset(graph.keys())
    decomp.add_node(first_bag)

    treewidth = len(first_bag) - 1

    while node_stack:
        # get node and its neighbors from the stack
        (curr_node, nbrs) = node_stack.pop()

        # find a bag all neighbors are in
        old_bag = None
        for bag in decomp.nodes:
            if nbrs <= bag:
                old_bag = bag
                break

        if old_bag is None:
            # no old_bag was found: just connect to the first_bag
            old_bag = first_bag

        # create new node for decomposition
        nbrs.add(curr_node)
        new_bag = frozenset(nbrs)

        # update treewidth
        treewidth = max(treewidth, len(new_bag) - 1)

        # add edge to decomposition (implicitly also adds the new node)
        decomp.add_edge(old_bag, new_bag)

    return treewidth, decomp